Impacts of microbes and biochar on soll health
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Video showing decomposition in compost and soil
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What is “soil health”?

Services: Services:
Efficient nutrient use Efficient/tight nutrient cycles
Building and regeneration C transformations
Strong skeleton/musculature Soil structure maintenance
Disease prevention Disease/pathogen resistance

Self-maintaining Self-maintaining

www.theatlantic.com/health/archive/2013/06/healthy-soil-microbes-healthy-people/276710/
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How microorganisms contribute to agricultural ecosystems
(the good, the bad and the ugly)



Our understanding of SOM formation and stability has changed
Microbes are drivers and also “feedstock” for SOM

b Emerging understanding @
Q:resh plant litter (leaves, stems, roots and rhizosphere); fire residues )

a Historical view
C Fresh plant litter (leaves) )
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Persistence of soil organic matter as an ecosystem property (2011) Schmidt et al. Nature 478, 49-56



Studies estimate that ~ 80% of SOC can be derived from microbial biomass
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Studies estimate that ~ 80% of SOC can be derived from microbial biomass
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Biological processes are very important to aggregate formation,
particularly at larger (microaggregate) scales and in low clay soils

Microaggregate

N
Macroaggregate Microaggregate Submicroaggregate Primary particles
* Roots * Root hairs * Mineral grains encrusted with plant of silt, clay and humus
* Hyphae * Hyphae and microbial debris » Clay and clay-humus domains
* Polysaccharides * Plant debris coated with clay
(a) (b) (c) (d)

From Brady and Weil, 2008



Well-structured soil allows for more storage and
movement of water and gases, and habitat for organisms

a. Well-structured soil

stored in pores

b. Poorly structured soil

Water remains
near surface

Water and nutrients move
very slowly down profile:
air may be excluded

Very small
pores

agriculture.vic.gov.au



Managing the N cycle means managing microbes

Root and mycorrhizal
exudates increase
labile SOM

:

—_ Plants

Microbial N immobilization
competes with plant uptake

onomers'Microbes

Soil
organic
matter

ST T -’
Hj Leaching
Microbial stress and T T T T
soil food web grazing
increase labile SOM Atmospheric N deposition and N losses

cause environmental degradation



{v/ The Soil Food Web
O\ —

Arthropods
Shredders
Nematodes
Root-feeders

Nematodes
Fungal- and
bacterial-feeders

Arthropods

Predators

Birds

Fungi
Mycorrhizal fungi
Saprophytic fungi

Nematodes
Predators

Shoots and
roots

% SAEES
Orgam_\ Protozoa
Matter \ Amoebae, flagellates,
Waste, residue and and ciliates .
metabolites from ‘ ' . Animals
plants, animals and Bacteria
microbes.
First Second Third Fourth Fifth and higher
trophic level: trophic level: trophic level: trophic level: trophic levels:
Photosynthesizers Decomposers Shredders Higher level Higher level
Mutualists Predators predators predators
Pathogens, Parasites Grazers

Root-feeders



Aggregate Ecosystem  Functional Assemblages

Functions
. ~
C Transformations - Decomposers /%7 Arthropods
- Fungi, bacteria, microbivores, detritivores
S
Nutrient cycling - Nutrient transformers %,
- Decomposers, element transformers, N-
fixers, mycorrhizae
: . Yy —
Soil structure - Ecosystem engineers ™G
maintenance - Megafauna, macrofauna, fungi, bacteria

a ~

Biological population ° Biocontrollers ﬁ@m
regulation - Predators, microbivores, hyperparasites



Does soil biodiversity matter?




Does soil biodiversity matter?

- i T

e Changing conditions (e.g. temp, moisture, O2 leve|) - —

The more diversity in each function, the wider our “latitude of health” or resilience




S
So how do we manage soil for microbes?

- More carbon inputs to soil
« Compost
- Cover crops
- Crop residues
* Living roots
- Biochar (?)

- Create conditions that favor
aggregation formation
- Smart timing/amount of tillage

House them

+ Increased microbial biomass and activity

There are still many questions regarding changes in microbial
diversity and composition and what they really mean.
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Biochar characteristics

Biochar: Thermal degradation of an organic feedstock through
pyrolysis under low/no O, conditions.

Stability

pH
/ Surface area

Production Temperature

Tan et al., 2015 (biomass image); Lehmann & Joseph, 2009 ; Mukome et al., 2013 (SEM image)



Soil variables affecting organisms

- Soluble carbon

- Nutrient availability

- pH - Changes in:

m===) ° Microbial abundance
- Microbial activity

* Pore space

- Sorption potential — enzymes,

signaling, nutrients, toxins - Community composition

» Soil moisture

- Presence of inhibitory
compounds and contaminants



Change also depends
on the soil you're
addingitto

« Substrate bioavailability

« Sorption of allelopathic
compounds

« Disruption of quorum
sensing

« Cand N mineralization
rates

Microbial habitat and

Fungi
Bacteria
Archaea
Fauna
Roots

* Nutrient solubility

- Microbial biomass &
composition

- Microbial processes
sensitive to pH




B
What can happen when biochar changes pH?

4 45 5 55 6 6. 75 8 85 9 95 10

Nitrogen

- Affects nutrient availability

» Could increase or decrease mmm———

i I : Sulph
- Microbial biomass tends to e

Calcium

increase with increasing pH

» Many microbial processes
sensitive to pH

- Nodulation and N fixation col

- Nitrification

Image from supernaturalbrand.com



Anticipated effects of raising pH from 3-4 to 5-6 with biochar
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Sometimes biochar adds a C and nutrient source

- Short term burst of activity from Cand N released from biochars
soluble C? '
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In other cases, there can be decreased microbial activity

- Lower net N mineralization and nitrification rates
- Lower microbial biomass?
- Sorption of ammonium (NH,*)?
- Negative priming of SOM?
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Dempster et al., Plant Soil, 2011



Changes in microbial community composition

18 - [ ] Biochari+Soil
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Grossman et al., Microbial Ecology, 2010 Steinbeiss et al., Soil Biol Biochem, 2009



Increased microbial biomass but not activity

1200

Correlated with

* Biochar didn’t affect C
— 1000 - —

moisture content transformations
800 1

600 | Higher microbial biomass in

high biochar may be due to
increased soil moisture
content

400 A

Microbial biomass C
MCB (mg C kg"

200 -

1.2

1.0
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( ) Domene et al., Soil Biol Biochem, 2014



Soil Biol and Biochem, 2011

*)

Lehmann et al

Bacterial cells clinging
to biochar surfaces

Fungal hyphae
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R —e-
Mycorrhizal colonization

Root Colonization
c 70% A
* Increased colonization with ¥ 7 ?
biochar g 40%] . X
§ 30% - b ' |
3 20%- ' .
04 Average Dry Aboveground Biomass
- But decreased biomass at
. : 0.3 -
high N + biochar treatment  _
. ] - o 02-
- Biochar causing parasitic =
activity by mycorrhizae? 01
0
’60\«

LeCroy et al., Soil Biol Biochem, 2013 &



Lehmann et al., Soil Biol and Biochem, 2011

Surface Area and Sorption Capacity

Surfaces for biofilm formation and attachment

Sorption of inhibitory compounds
Sorption of signaling compounds

Lower substrate bioavailability?

AHL

AHL responsive
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Masiello et al., Environ SciTech, 2013

AHL producing cell




Legume-Rhizobia Signaling Process

NodD
activation

Flavonoid



Can biochar interfere with this process?
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Number of nodules per plant

Silt loam . Sand
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Figures1and 2. Mean = SE.

Conclusions

- Walnut shell biochar has the potential to reduce nodulation in cowpeas

- Important to compare to biochars of other feedstocks/pyrolysis temperature
- Repeat experiment with method of pH adjustment for limed controls



Can we use biochar to manage microbes?

- Inoculant carrier .§ 50 - —O— RW =0.74 - 0.11BC. % = 0.28. P < 0.001
A
g 40

- Reduce pathogens m—) -
§° 30 -
E
E 20 -

° 10 v L} Al ¥ Ll T T
- Concerns: 00 05 10 15 20 25 30 35
- Toxic volatile matter Percent biochar in soil (w/w)

- Salts
- Heavy metals

- Can we manipulate biochar to have the right characteristics?
- Microbes are affecting biochars’ fate just as it affects them
- At what timescale is biochar having effects?



R —e-
Take-home messages

- Healthy soils provide food/fiber while also...
- Storing carbon
+ Cycling nutrients
- Creating strong soil structure

- Resisting pathogens

- Soil organisms play a key role in all of these services

D (P>
o T — ooy —>
A & D

- Some biochars may increase microbial activity and desired
functions, but not for all biochar/soil combinations




Thank you!
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