

Pollination

- 90% of all flowering wild plants depend on insect pollination
- At least ⅓ of the global crop production is from crops that to some extent depend on insect pollination

Both bee and non-bee pollinators

Both honey bees and wild bees

Both wild insect and honey bees contribute to crop pollination and rather complement than replace each other.

Garibaldi et al. (2013) Science

Review

SCI where science meets business www.soci.org

Neonicotinoids – from zero to hero in insecticide chemistry

Peter Jeschke^{1*} and Ralf Nauen²

²Bayer CropScience AG, Research Insecticides Biology Insecticides, Building 6220, Alfred-Nobel Str. 50, D-40789 Monheim am Rhein, Germany

Figure 1. Development of insecticidal classes in crop protection, 1990–2005, expressed as percentage of total.

Figure 2. Development of insecticidal classes in seed treatment, 1990–2005, expressed as percentage of total.

¹Bayer CropScience AG, Research Insecticides Chemistry Insecticides, Building 6240, Alfred-Nobel Str. 50, D-40789 Monheim am Rhein, Germany

Neonicotinoids

- Imidacloprid (Bayer Crop Science) was the first (1991)
- Acetamiprid, nitenpyram, thiamethoxam, thiacloprid, clothianidin, dinotefuran (1995-2002)
- Effective against many insect pests
- Systemic
- Water soluble
- Slow degradation (long half-life)
- High selectivity against insects over mammals

Increasing knowledge on neonics and bees

Most known about seed treatment in corn

Table 1. Total number of studies on neonicotinoids and bees in different crops, study examples for each crop, and number of studies for each method of application in each crop ('Seed' = seed treatment application, 'Foliar' = foliar spray application, 'Soil' = furrow, drench or drip irrigation application, Granulate = granulate application).

Crop Linnean name	Common name	# studies	Study example	Application method			
				Seed	Foliar	Soil	Granulate
Zea mays	Maize	28	[28]	28			
Brassica napus	Oilseed rape	7	[29]	6	3		
Helianthus annuus	Sunflower	7	[30]	7			
-	Turfgrass	4	[<u>31</u>]		4		1
Cucumis melo	Cantaloupe	3	[32]		1	2	
Gossypium spp.	Cotton	3	[33]	1	2		
Solanum lycopersicum	Tomato	3	[<u>34</u>]		2	2	
Citrus spp.	Citrus fruits	2	[35]		1	1	
Cucurbita pepo	Pumpkin, squash	2	[36]	1	1	2	
Malus domestica	Apple	2	[37]		2		
Brassica juncea	Mustard	2	[38]	1	1		
Actinidia spp.	Kiwifruit	1	[39]				
Brassica rapa	Turnip rape	1	[40]		1		
Glycine max	Soybean	1	[33]	1			
Medicago sativa	Alfalfa	1	[<u>10</u>]		1		
Triticum spp.	Wheat	1	[41]	1			

Most knowledge about honey bees

Species

Apis mellifera, Apis cerana

Bombus terrestris, Bombus impatiens, Bombus spp.

Megachile rotundata, Apoidea spp., Melipona quadrifasciata, Osmia bicornis, Osmia lignaria, Nannotrigona perilampoides, Nomia melanderi; Osmia cornifrons, Scaptotrigona postica N studies

168

42 🕺

17

250 species

>20 000 species

7 species

Lundin et al. (2015) PLoS ONE

Most knowledge from lab studies

...and field studies estimating exposure in honey bee collected pollen or nectar/honey (but very few on effects)

24 h exposure of bumble bees in cage trial

Lethal and sublethal effects

Three alarming studies in 2012

Semi-field study on bumble bee colonies

Semi-field study on honey bee foraging

Landscape-scale experiment in 2013

- 8 pairs of spring-sown canola fields and surrounding landscapes
- random assignment to treatment (clothianidin seed dressing) and control
- treatment blinded during field work

Verifying exposure – oilseed rape pollen use and clothianidin residues

Table 1 | Clothianidin concentrations in bee-collected pollen (ng g^{-1}) and nectar (ng ml^{-1}), and field border differences between treatments (control or insecticide-coated seeds)

Insecticide seed coating

Control

Control	insecticide seed coating			
Range	Mean ± s.e.m.	Range	Mean ± s.e.m.	
0	0	6.6–23	13.9 ± 1.8	
0-0.61	0.1 ± 0.1	6.7–16	10.3 ± 1.3	
0	0	1.4-14	5.4 ± 1.4	
0	0	0-5.9	1.2 ± 0.8	
No material collected		0–6.5	1.0 ± 0.8	
	Range 0 0-0.61 0	Range Mean ± s.e.m. 0 0 0-0.61 0.1 ± 0.1 0 0 0	Range Mean ± s.e.m. Range 0 0 6.6–23 0–0.61 0.1 ± 0.1 6.7–16 0 0 1.4–14 0 0 0–5.9	

The neonic treatment had no significant influence on *Apis mellifera* colony strength

The neonic treatment was negatively related to *Bombus terrestris* colony growth

Rundlöf et al. (2015) Nature 521: 77-80.

...and Bombus terrestris reproduction

Queens

Workers/males

Queens: -85%

Relation between the neonic treatment and reduced nesting of *Osmia bicornis*

Reduced wild bee density in oilseed rape But that's just one croplyearing was a subject to the croplyearing of the croplyearing and the croplyearing of the croplyearin fields treated with the neonic 80 -60 -40 -20 0 Rundlöf et al. (2015) Nature 521: 77-80.

a

Wild bee density

Autumn sown canola in three countries

- Clothianidin treated canola expressed higher clothianidin residues than the control crop, but residues very low (LOD-2.21 ppb)
- No systematic differences in neonicotinoid (clothianidin + thiamethoxam + imidacloprid) residues between treated and control sites
- No systematic differences in (most) bee measures between treated and control sites

Autumn sown canola in three countries

Correlative study links bee decline to neonics

Neonicotinoids:

- -- canola foraging bees
- other bees

Canola cover:

+ canola foraging bees other bees

Foliar applied insecticides:

canola foraging bees other bees

Figure 2 | Posterior distributions for the effect sizes describing wild bee population persistence in England.

Effects on pollination

Figure 1 | Effects of pesticide treatment on colony-level behaviour.

Routes of exposure

Figure 1 | The environmental fate of neonicotinoids. When neonicotinoids are applied as a seed

Spray Drift Dust When applied as a spray, neonicotinoids Neonicotinoids can be released can drift off-site directly exposing bees as dust from coated seeds during or contaminating non-target sites. mechanized planting. This dust can move off-site exposing bees or contaminating non-target sites. Uptake Plants take up neonicotinoids, allowing the chemical to spread through the plant's tissues potentially exposing insects that eat pollen, nectar, or other plant tissue. 25 Persistence Most neonicotinoids are long-lived. As such they can persist in the environment for months to years after an application. Leaching Neonicotinoids can leach into subsurface water where they can enter ground water or be taken up by neighboring plants. Movement Into Wind Erosion Watershed Contamination Habitat of Ground Nesting Insects Neonicotinoids have Neonicotinoids are water-soluble by design. This means they can been found in soil and 70% of native bees are ground nestmove with shallow subsurface soil dust. Contaminated ing. Ground nesting insects could flow or with surface runoff into soil can be dispersed by become contaminated, especially local waterbodies. wind. when neonicotinoids are applied as

a soil drench.

Botías et al. (2015) Environmental Science & Technology 49: 12731-12740.

Non-crop habitats emerge as exposure routes

David et al. (2016) Environment International 88: 169-178.

Neonicotinoids in "bee-friendly" ornamental plants

All but one of these garden insecticides contain neonicotinoids, and none of the labels indicate that they are poisonous to bees and adult butterflies. Photograph by Matthew Shepherd.

Hopwood & Shepherd (2012) Neonicotinoids in Your Garden. Xerces Society

Visit for more information: http://xerces.org/neonicotinoids-and-bees/

Drivers of bee decline

