Maintaining your trees during drought: challenges and management

Igor Laćan Urban Forestry Advisor University of California, Cooperative Extension

UC CE

University of California Agriculture and Natural Resources

Cooperative Extension

ilacan@ucanr.edu 510 684 4323

With slides from

Drought: a challenging time for urban trees

Urban trees: Beautiful, beneficial, cost-effective

Drought challenges, solutions (as seen by a tree)

Tree <> uses of water, indications of stress Soil <> water availability, storage, application In practice <> tools and resources

Resources, Discussion (soft projectiles only, please)

UC CE

Watering "situation" before the drought

Growth; health?; wasted water

Growth; health Growth; health Applied Tree water response Health? Bye-bye...

UC CE

Watering "situation" during the drought...

Growth; health?; wasted water

Applied water

UC

Conceptual view of urban trees in drought

\$→ Situation	Costs now	Costs later	Benefits	Benefit- Cost Ratio
No drought				+ +
Drought				
Drought + minimal water				+ +
Drought + optimal water				+

A common sight in 2013, 2014, 2015, 2016, 2017...

Plants need water...

Turgid cell from a leaf with enough water

Flaccid cell from a leaf with no water

Turgid plant

Flaccid plant

1) Turgor
 2) Transport of solutes
 3) Photosynthesis

Trees and drought: problematic in several ways...

- Trees need water to "feed themselves" (photosynthesis)
 Drought = reduction in growth (which may persist)
 Drought = less stored energy = lowered defenses
- ~ Drought = facilitates insects, diseases

Trees and drought: problematic in several ways... ~ Trees need water to "feed themselves" (photosynthesis) ~ Drought = reduction in growth (which may persist)

Watering can be a critical element of IPM!

Example: Eucalyptus longhorned borer

Water Stress and Insect Injury

Although some species perform well with little or no irrigation water, their susceptibility to insect attack and injury may increase with water stress. For example, many *Eucalyptus* species perform well in nonirrigated locations in many parts of California. When water stressed, however, they become susceptible to attack and injury by the eucalyptus longhorned borer (*Phorocantha semipunctata*). This is also the case for Monterey pine (*Pinus radiata*) and the California fivespined engraver beetle (*Ips paraconfusus*). For these species, evaluations were made with consideration given to water stress and pest interactions. For example, although Tasmanian blue gum (*Eucalyptus globulus*) performs well in Regions 3 and 4 with little summer water, it was assigned the category Moderate to minimize susceptibility to borer injury.

Drought: soil water concepts

Urban trees: Beautiful, beneficial, cost-effective

Drought challenges, solutions

Tree <> uses of water, stress Soil <> water availability, storage, application In practice <> tools and resources

Resources, Discussion

Young trees: Lack of water = quick death

←Problem: "Deep watering…"

(but how much can it hold?)

"Crispy critters" (Larry Costello)

Young tree rapid response

How much?

Amazingly little: 5-10 gal

How often?

Frequently! (X times/WEEK)

Who?

Residents

NGOs

Partners (schools, churches, business)

Providing water to mature trees: functional approach (Nelda M. and Larry C.)

Functional irrigation approach: the truck analogy

Soil water reservoir:fuel tankEvapotranspiration:fuel consumptionTree condition:fuel gauge (wilting = empty)

Functional irrigation approach for mature trees: estimating the size of the "water reservoir"

Soil water reservoir capacity: 2 elements

- Volume \rightarrow area*depth, or inches water/foot depth
- Texture \rightarrow water stored \rightarrow clay > loam >> sand water available \rightarrow sand > loam > clay)

Soil water reservoir: Where are the roots?

Photo: Larry Costello

Soil line

Functional irrigation approach: estimating the size of the "water reservoir"

Soil water reservoir capacity: 2 elements

- Volume \rightarrow area*depth, or inches water/foot depth
- Texture \rightarrow water stored \rightarrow clay > loam >> sandwater available \rightarrow sand > loam > clay)

How is water "held" in soils?

Available water in soils (inches water/foot of soil depth)

soil texture ~ soil water available ~ how often to water

Sandy

Clayey

Estimating Soil Moisture by Feel and Appearance

Appearance of clay, clay loam, and silt clay loam soils at various soil moisture conditions.

Available WaterCapacity 1.6-2.4 inches/foot

Percent Available: Currently available soil moisture as a percent of available water capacity.

In/ft. Depleted: Inches of water currently needed to refill a foot of soil to field capacity.

0-25 percent available 2.4-1.2 in/ft. depleted

Dry, soil aggregations separate easily, clods are hard to crumble with applied pressure. (Not pictured)

50 - 75 percent available 1.2-0.4 in./ft. depleted

Moist, forms a smooth ball with defined finger marks, light soil/water staining on fingers, ribbons between thumb and forefinger.

United States Department of Agriculture

Natural Resources Conservation Service

Approximate soil moisture/tension values for the "knee-of-the-curve", and Managed Allowable Depletion for 12 Soil Textural Classifications.

Prepared by: Richard White, Technical Applications, Soilmoisture Equipment Corp., August 200⁻805-964-3525 x 248 Approximate range of values for each soil textural classification

Soil Texture	Bulk		Field	"Knee							
Classification	Density		Capacity	of Curve"	50%	MAD*	Available	Water	Field	Capacity	Wilting
	g/cm3		cbar=kPa	cbar=kPa	in/ft	cm3/cm3	in/ft	cm3/cm3	in/ft	cm3/cm3	in/ft
Sand	1.66	Min	9	20	1.14	0.04	0.84	0.07	1.56	0.13	0.72
	1.68	Max	10	25	1.32	0.04	0.96	0.08	1.80	0.15	0.84
Loamy Sand	1.61	Min	10	25	1.44	0.04	0.95	0.08	1.91	0.16	0.96
	1.61	Max	11	30	1.50	0.05	1.08	0.09	2.04	0.17	0.96
Sandy Loam	1.53	Min	10	22	1.61	0.05	1.06	0.09	2.14	0.18	1.08
	1.57	Max	11	27	1.85	0.07	1.54	0.13	2.62	0.22	1.08
Silt Loam	1.37	Min	11	27	2.24	0.08	1.84	0.15	3.16	0.26	1.32
	1.44	Max	12	32	2.47	0.10	2.30	0.19	3.62	0.30	1.32
Silt	1.43	Min	11	25	2.39	0.10	2.38	0.20	3.58	0.30	1.20
	1.43	Max	12	30	2.41	0.10	2.42	0.20	3.62	0.30	1.20
Loam	1.41	Min	12	30	2.06	0.06	1.47	0.12	2.79	0.23	1.32
	1.46	Max	13	35	2.33	0.08	1.77	0.15	3.21	0.27	1.44
Sandy Clay	1.30	Min	13	35	3.27	0.04	1.02	0.08	3.78	0.31	2.76
	1.33	Max	14	40	3.51	0.06	1.25	0.11	4.13	0.35	2.88
Sandy Clay Loam	1.37	Min	13	40	2.39	0.04	0.93	0.08	2.85	0.24	1.92
	1.43	Max	14	45	2.63	0.06	1.42	0.12	3.34	0.28	1.92
Clay Loam	1.29	Min	14	45	2.99	0.06	1.41	0.12	3.69	0.31	2.28
	1.33	Max	15	50	3.24	0.08	1.92	0.16	4.20	0.35	2.28
Silty Clay Loam	1.26	Min	13	40	3.27	0.08	1.97	0.16	4.25	0.35	2.28
	1.29	Max	14	50	3.34	0.09	2.12	0.18	4.40	0.37	2.28
Silty Clay	1.21	Min	12	38	4.19	0.08	1.89	0.16	5.13	0.43	3.24
	1.23	Max	14	42	4.34	0.08	1.96	0.16	5.32	0.44	3.36
Clay	1.21	Min	14	55	3.86	0.05	1.23	0.10	4.47	0.37	3.24
	1.28	Max	15	60	4.52	0.08	1.83	0.15	5.43	0.45	3.60

Functional irrigation approach: wrap-up

Soil water reservoir:

Evapotranspiration:

Tree condition: Soil moisture content: fuel tank

fuel consumption

fuel gauge (wilting = empty) the other fuel gauge

Example: An unhappy tree in a green lawn...

Watering BMPs #1: check the soil, do not presume!

Laboratory method: gravimetric water content

G) Accurate, versatile
B) Slow
U) Cumbersome
\$...?

Wet weight - dry weight

dry weight

Water content measurement: Capacitance sensors

G) Reasonably accurate, versatile, quick
B) No major badness; but need a "tight fit" with the soil
U) Can get expensive
\$100-150/sensor (+\$400 for reader)

Water content measurement: TDR sensors

G) Reasonably accurate, versatile, quick
B) No major badness; need a "tight fit" with the soil
U) Expensive
\$850-\$3000

Water-potential measurement: Tensiometer

U) Best for wet-ish soils (sandy)

\$50-200

Sort-of Water-potential measurement: Gypsum blocks

G) Well-known (but a RELATIVE measurement)

B) Affected by salinity

U) Poor accuracy in wet soils (and limited range in dry...)

\$10-\$20/sensor+ \$300 for reader

"Soil Wetness measurement" (the inexpensive stuff)

G) Affordable, but a TOTALLY RELATIVE measurement (no units on scale!)

B) Affected by salinity: really - it doubles as a salinity meter!

U) Cannot use across multiple soils without "re-calibrating"

\$50-\$120

Soil probes and augers for the win!

G) Affordable, and super-useful

B) Quite subjective – not a direct replacement for a meterU) Can be laborious...

\$30-\$500

Watering BMPs #2: check the roots...

Watering BMPs #3: Avoid damaging the roots!

Trenching and root cutting leads to water deficits.

Magnolia grandiflora before trenching....

...and 3 months after trenching.

Watering **BMPs** #4: Maintain a turf-free zone around newly planted trees.

No turf

Watering BMPs #5: Mulch!

Grass

Mulch

← Tree roots do better under mulch

Mulch pitfalls: volcanoes

Check your local rainfall..

Drought: some UC resources

UNIVERSITY OF CALIFORNIA AGRICULTURE & NATURAL RESOURCES UC 🔶 IPM

Statewide Integrated Pest Management Program

What is IPM? Identify & Manage Pests Research Publications Training & Events Links About Us Contact Us Subscribe 🔊

Solve your pest problems with UC's best science

What's New

ipm.ucdavis.edu

- Highlights: 2014 Annual Report
- Pest Notes: Wild Pigs added, Flies and Skunks revised
- Ag Pest Management: Caneberries, Artichoke and Avocado updated
- Quick Tips: 12 English Quick Tips and BMSB Pest Alert updated
- Green Bulletin: May 2015
- Online courses: Pesticide Resistance · Providing IPM Services in Schools and Child Care Settings
- More...

QUICK LINKS

- Newsletters
- Recursos en español
- Online training
- Weather, models, & degree-days

Home, Garden, Turf & Landscape Pests

Natural Environment Pests

Agricultural Pests

Exotic & Invasive Pests

ccuh.ucdavis.edu

UCDAVIS COLLEGE OF AGRICULTURAL AND ENVIRONMENTAL SCIENCES

Home Public Industry Academia About Us Contact Giving

Enhancing urban living through horticulture

Located at the University of California, Davis, the **California Center for Urban Horticulture (CCUH)** draws upon the knowledge and expertise of our partners in academia, industry, and the public with a mission to help Californians

- · develop more water-conserving, pest-resistant and disease-resistant home gardens
- create environmentally sound public landscapes and parks
- produce better plant materials for sustainable urban landscapes

We seek to address the state's growing water demands, increasing chemical inputs into the environment, and loss of wild lands in order to improve the quality of urban life.

News

San Jose Drought Workshop Presentations & Handouts Now Available!

Jun 18, 2015

Lake Tahoe Drought Workshop Presentations & Handouts Now Available!

Jun 08, 2015

More news...

Featured

NEW! Landscaping Resources During Drought!!

NEW! Landscape Irrigation Scheduling!

Results from Kurapia Irrigation Trial Available Now!

New article about the TRIC on the UCANR Master Gardener Website!

Low Water Use Landscaping Presentations from Nov 8th Available Here

Tree Ring Irrigation Contraption (TRIC): A New Way to Water Trees with Confidence **Rotary sprinkler irrigation contraption** - RSIC by Dr. Loren Oki and Dr. Dave Fujino, UCD CCUH

Fujino/Oki Rotary sprinkler irrigation contraption

Parts List (Est. cost = \$15 - \$20) Sprinkler spike \$4

- *Aqualine SS-50Z $\frac{1}{2}$ in.
- Pressure regulated shrub riser
 *Hunter PROS-00-PRS30
 *Rain Bird PA-8S-PRS
 - *Toro 570S-PRX
 - Pipe nipple
 - 1/2 in. x 2 in. PVC

Multi-stream rotary sprinkler

*Hunter MP1000210-270 *Rain Bird R-VAN1318 *Toro PRN-A \$6

\$1

\$4

*You need only one in each category

Fujino/Oki RSIC: How long to run it?

Time required to wet the soil down to $18'' \rightarrow$

Depends on soil type

Multi-stream rotors have LOW flow rates; good: less chance for runoff

Soil type	Run time (hr:min)*					
	Hunter	Rain Bird	Toro			
sand / fine sand	2:15	1:30	1:30			
loamy sand	3:00	2:00	2:00			
sandy loam	4:45	3:00	3:15			
loam	6:45	4:30	4:45			
silt / silty loam	8:30	5:30	5:45			
sandy clay loam	6:30	4:15	4:15			
clay loam	6:45	4:30	4:45			
silty clay loam	7:45	5:00	5:15			
sandy clay	5:15	3:15	3:30			
silty clay	6:00	4:00	4:00			
clay	6:30	4:15	4:15			

*Rounded to 15 minutes

Times in red denote runoff may occur

<u>"Tree Ring Irrigation Contraption"</u> Loren Oki and Dave Fujino

- Calculates irrig. run time to wet a tree to 36" deep
- Input info for 1' spacing:
 - Canopy radius, soil type, no.
 of 100' drip lengths (Netafim)
- <u>http://ccuh.ucdavis.edu/</u>

Fujino/Oki Tree ring irrigation contraption: Parts

Netafim drip tube

Hose water timer ¹/₂" PVC threaded cap (programmable)

¾" PVC threaded coupling

³⁄₄" female thread to hose swivel adapter

Barb to ½" male thread adapter

Barb to ¾" male thread adapter

Filter (at least 120 mesh)

Compare my trees' water use to other species:

ucanr.edu/sites/Wucols

ucanr.edu/sites/WUCOLS/

1 SHARE PRINT SITE MAP

😭 🔻 C 🛛 🕙 🕶 Google

Enter Search Terms

WUCOLS IV Water Use Classification of Landscape Species

Home Page

User Manual

Plant Search Instructions

Plant Search Database

Download WUCOLS IV Plant List

Download WUCOLS IV User Manual

Water Requirements for Turfgrasses

Partners

Acknowledgements

Home Page

GETTING STARTED

If you are using the WUCOLS list for the first time, it is essential that you read the User Manual. The manual contains very important information regarding the evaluation process, categories of water needs, plant types, and climatic regions. It is necessary to know this information to use WUCOLS evaluations and the plant search tool appropriately. To access the User Manual, click on the tab (on left) and view specific topics.

Water conservation is an essential consideration in the design and management of California landscapes. Effective strategies that increase water use efficiency must be identified and implemented. One key strategy to increase efficiency is

WUCOLS categories

CATEGORIES OF WATER NEEDS

Category	Abbreviation	Percentage of ETo		
High	Н	70-90		
Moderate	М	40-60		
Low	L	10-30		
Very Low	VL	< 10		

Fig. 2. Five-finger fern was assigned to the "high" water needs category in four regions.

ucanr.edu/sites/UrbanHort

University of California Center for Landscape & Urban Horticulture

Home

Current Projects

Welcome!

Landscape Water Conservation and Management

Landscape Management

Turfgrass Management

Tree Care and Management

Publications

Welcome to the Center for Landscape and Urban Horticulture (CLUH), an information resource of the University of California Cooperative Extension (UC Cooperative Extension). CLUH supports UC Cooperative Extension educational and applied research programs serving California's

environmental horticulture industry.

- landscape water management and conservation.
- urban tree management and selection.
- assistance for consumers of horticultural products and services.

Information is contributed by University of California Cooperative Extension scientists. All content is reviewed by these or other experts to assure it is authoritative and sciencebased. Featured are fact sheets, newsletters, reports, commentary, and web links. Does the site you manage have a water budget or water conservation goal that seems impossible to meet? Read about Five Simple Steps for Conserving Landscape Water.

Q

PRINT

Dennis Pittenger's Bakersfield presentations on February 11, 2014

Dennis Pittenger's Long Beach

Elements of the problem, and responses

Aspect	Problem	Response
Lack of knowledge	"The trees will be fine"	Maybe – but they need a little help right now
Values, perspective	"We need to save water" <i>or</i> "there's no water for trees"	Trees are water-thrifty, their benefits are huge and irreplaceable
Technical	Don't know how to apply water, or how often, or how much	Young tree:10s gal/wk; Mature tree: 100s gal/month (in summer)
Attitude	"The city is not watering their trees"	I will do the little bit that's needed to save our city trees

New sources of water

Local:

Greywater

How much?

Some...

Pros/Cons

- + Reliable, cheap
- Wrong place

Use for other plants; saves potable water for trees

New sources of water

Local/regional:

Recycled

How much?

Lots... maybe!

Pros/Cons

- + Volume!
- Distribution, salts

E SECTIONS Q SEARCH	Los Ang	eles Tim	es	SUB1 4 WEEK	S FOR 20¢	
IONDAY AUG. 6, 2016	NOST POPULAR LOCAL SPORTS RO OLYMPICS	POLITICS ENTERT	AINMENT OPINION PLACE AN AD		÷	
f y 🖴				LO	CAL / L.A. Now	
La Cañao save tree	da Flintridge b s during droug	uys ro ;ht	ecycled w	ater to)	
By Sara Cardine			Advertiseme	nt		
	, As					
Dublin Sar	Ramon Services Dist	rict		Select Langu	age	
9 Wate	r, wastewater, recycled water			Search		
Home Your Account Y	our Dollars at Work Open Gov	Outreach	Do Business With Us	Careers	How To	
	Outreach » Drought Watch Water Conser	vation				
Drought Watch Water Conservation	RESIDENTIAL RECYC	LED WA	TER FILL STATIO	ON		
Water-Use Rules AquaHawk Customer Portal	Font Size: 💽 🗖 🚯 Share & Bookmark [+] Feedback 🚔 Print					
Gardening & Ingation	Free Recycled Water For	Home Lan	dscaping			

Keep track, test soils; but USE IT if you have it!

Long term response: reconsider trees + water

Element	Characteristics or Function
<mark>Water</mark>	 Grey → ubiquitous; for landscape trees or plants Recycl. → available to residents and city crews; distribution lines not crucial Potab. → "backup" or last resort for mature trees Storm → provides all of trees' winter needs; remains stored in soils/accessible
Plant palette & setup	Landscapes→ water-conserving, tree-compatibleTrees→ drought- and recycled water-tolerantIrrigation→ separated: trees vs. other plants
<mark>Steward-</mark> ship	Shared between residents, NGOs, local groups, and municipal staff

Thank you!

Igor Laćan ilacan@ucanr.edu 510 684 4323 UC CE

University of California Agriculture and Natural Resources

Cooperative Extension

"Making the 50+ Year Decision"

Ralph Mize, City Arborist emeritus, San José, CA

Goal: a "successful urban tree"

Provides benefits

Is well-behaved

Is alive

whose value exceeds the costs of maintenance

does not cause problems (roots; pollen; litter)

lives and grows in the desired location

Tree species selection 1: Individual considerations

Another example of single-tree considerations

Shothole Borers John Kabashima, UCCE

86

P

Photo: Richard St

Pest Vulnerability Matrix

Construction

- 1 Obtain pest-host information
- 2 Arrange in table, indicate severity
- 3 Verify local importance

Pests of Landscape Trees and Shrubs

An Integrated Pest Management Guide

UC STATEWIDE INTEGRATED PEST MANAGEMENT PROGRAM

Publication 3359 University of California Copyrighted MateriaAgriculture and Natural Resources

Pest	London plane tree	Maple	Honey Locust	Callery pear	Linden	Zelkova	% Tree species affected	Proportion of tree population affected
Pest count >>>	5	6	3	์ 1	2	2		
Proportion of all trees >>>	0.4	0.2	0.1	0.1	0.1	0.1		
Anthracnose (fungal disease)							50%	70%
Defoliating caterpillars							50%	70%
Soft scales (insect)							50%	70%
Aphids (other)							50%	70%
Asian longhorned beetle							33%	60%
Spider mites (combined)							33%	30%
Armillaria root rot or Oak root fungus.							17%	10%
Fireblight (bacterial disease)							17%	10%
Other native borers (combined)							17%	10%

Tree species selection 2: considering all trees

(3) Street trees& climate change

10.0F

8.0F

6.0F

A2

Many common street tree species are unsuitable for a warmer climate

summary

Thank you!

Igor Laćan ilacan@ucanr.edu 510 684 4323 UC CE

University of California Agriculture and Natural Resources

Cooperative Extension