The One Thing

Drip Irrigation systems are popular for their low pressure requirements and slow precise application of water. Many drip systems do not have this capability due to poor scheduling. This is largely the case because their rates of application are not known

The Situation

Irrigation runoff with drip irrigation systems into the waterways of the state and within the drip zones shifting water away from the intended target. A significant loss of plant material due to poor scheduling. Much of this occurs because drip application rates are not known!

This area is under drip (point source) irrigation. How many minutes per week should it be watered in Sacramento in July

This area is under line source (brown tubing) irrigation. How long should this station water?

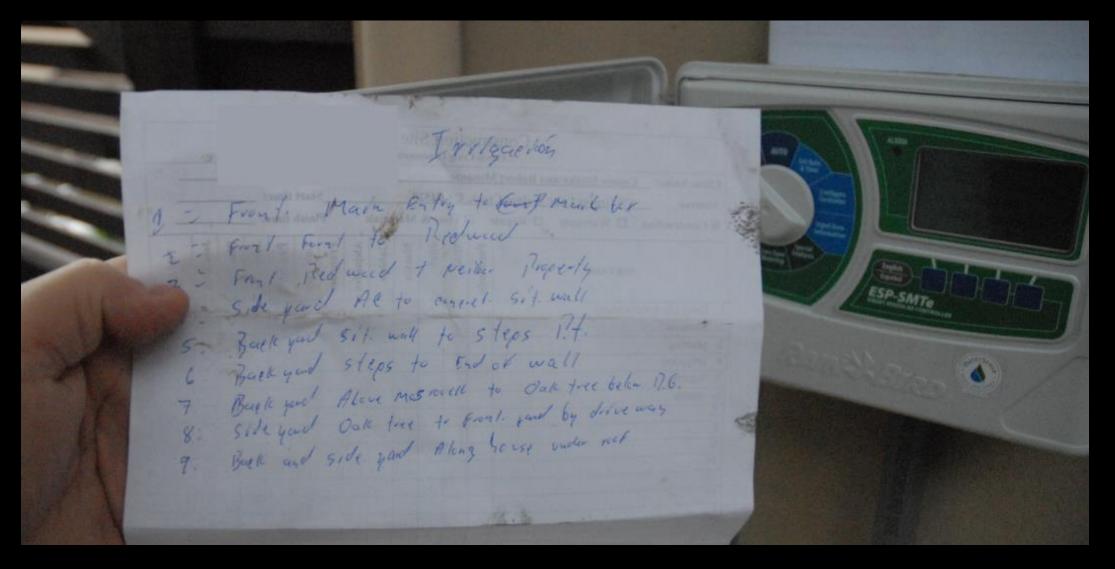
The Answer!

Who could know with such limited information?

Irrigation runoff in a common area in north Chico, CA

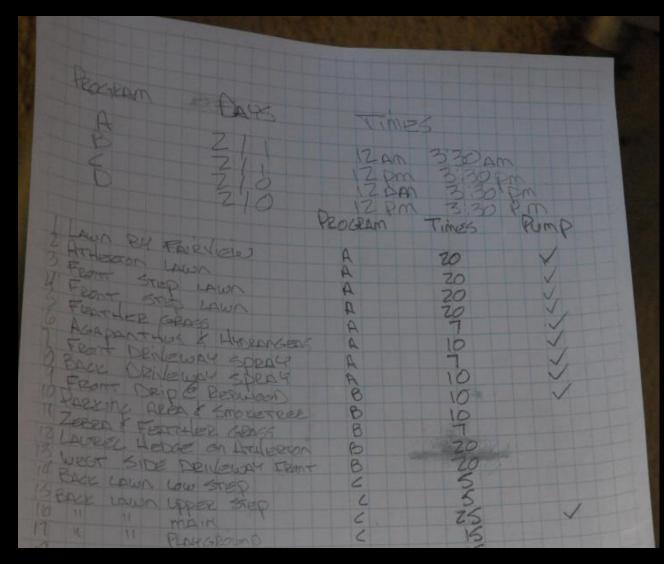
This water in the gutter pan the morning after an irrigation event

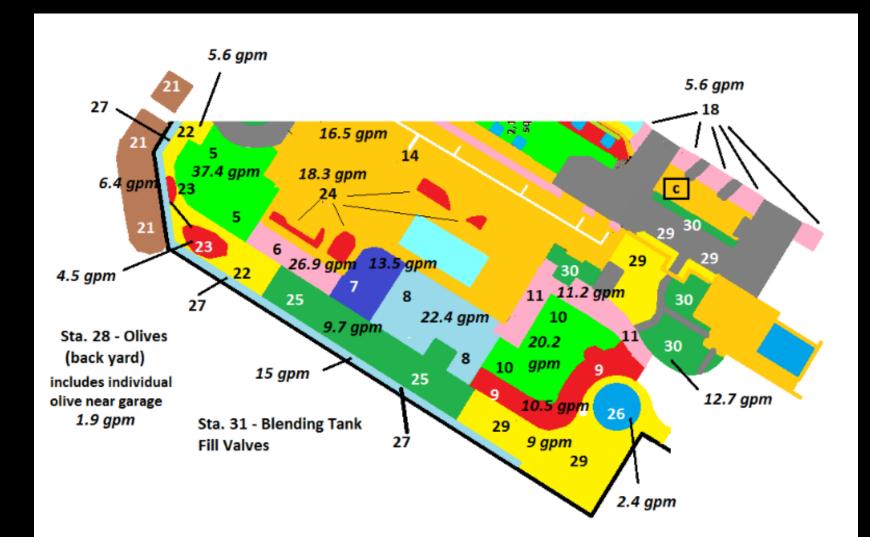
The soil appears dry, but water is seeping out under the curb

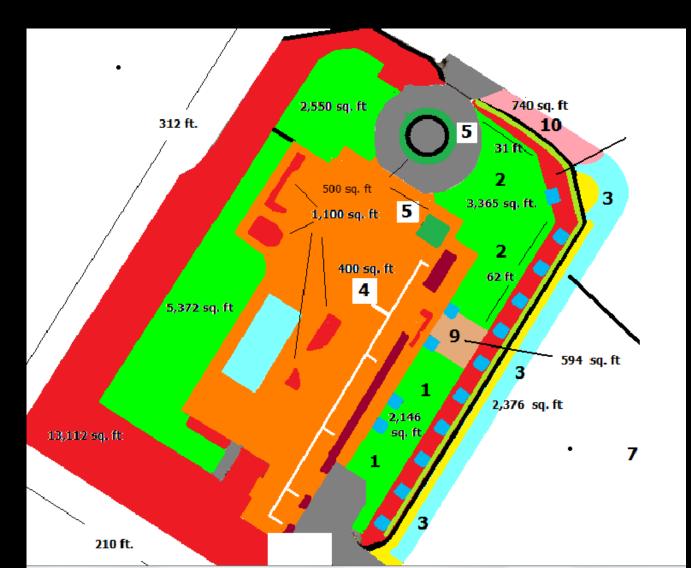


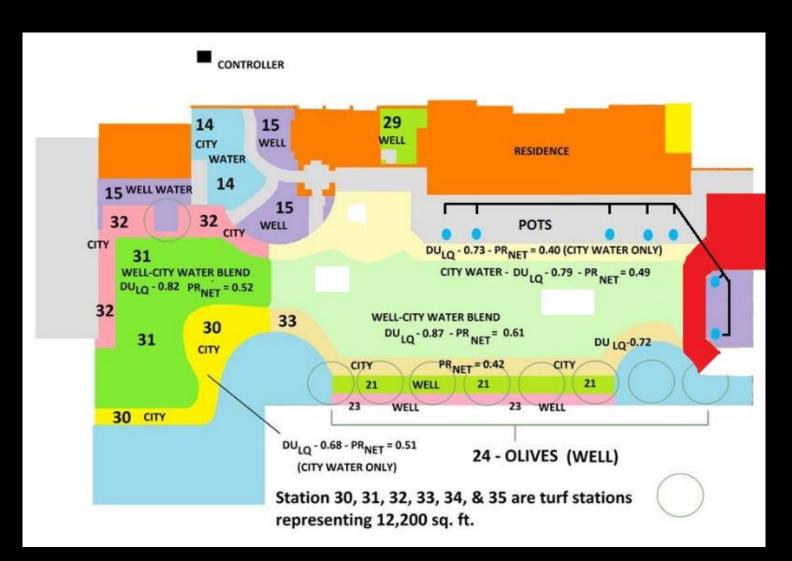
Valve boxes are all flooded!

Look to the Irrigation Controller for site information – area irrigated, plant material, and application rate!


	BAISBHOY BEOUXE OL BADWEN THE ADHESIVE REMOVE TO B	XPOSE A	ONESIVE .	EMOVE TO EXPO	SE ADHESIVE	
RAI	RAIN BIRD.	IAE	S3HOV 3SOdX3 O Program A	Program B	Program C	Program D
Clear all pro Borne la info	PROGRAMMING CHART for ESP LX+ Controllers	Watering Days	M T W T F S S ODay cycle O even O odd	W T W T F S S ODay cycle O even O odd	M T W T F S S 	M T W T F S S OOay cycle O even O odd
A	10, HR	0	1 am/pm 2 am/pm 3 * am/pm	1 am/pm 2 am/pm 3 am/pm	1 am/pm 2 am/pm 3 am/pm	1 am / pm 2 am / pm 3 am / pm
Set current	state - st	Program art Times	4 am/pm 5 am/pm 6 am/pm	4 sm/pm 5 sm/pm 6 sm/pm	4 am/pm 5 am/pm 6 am/pm	4 am/pm 5 am/pm 6 am/pm
Ajuste la fc	and a second	er Budget ion Delay	\$	\$	\$	\$
EBE		MV/Pump Relay	Run Time 🛣	Run Time 🛣	Run Time 🛣	Run Time
	1. Sound Enst Revelles		12			
	N. SE Rotar Horse		10		3.1	
1	6, ERATR:		ud-		+4	-22
	-8. Pop up Fat	Side	inda 1200	nto	11.7	
	Xº. K 10. Ho feres / By Clock	Cion Cion	1 Akoro			
	121. Bycal All Phops	- Don	15	By Cla	14 10	
Sat Duck	13.	Cion	Rods	Spec ftr.	SLL. Bu	den
Set Cycli Fije Cale	15 t 16 Rotaki	Clon	Mail 2	ex and	North 5	te
	17 18 Nath Sol 3	La Cion	Potovs	Ant Box	10423	
0	20	Don	Mar all and			1 10 10 10 10


PROGRAMS			A						В				C									
WATER DA	YS		M	T	W	Т	F	S	s	M	TW	1	TF	S	s	M	T	w	1	£	5	
nterval o	r Odd/Even Days																					
Event Day	(s) Off																					
START TIME(S) 1		1																				
	e(s) to start the watering cycle(s).	2																				
	y one program start time	3																				
	eeded to run the cycle.	4																				
STATION	Location		S	tati	ion	Rur	n Tir	ne		Sta	tion	Rı	un Ti	me		St	atio	on R	21117	Tie		
1	Lawn Stri	p -	a	t	p	20	Sa	UN	g :		97,								(uni			
2	Plants R side			ł	-10	12	+															
3	1 100		0			F	10	nt	-				- 10									
4	Lawn bor	K	1	ar	6			40	00	ve	1					T						
5		Real free		2	2		1	4		L	a	N	A	-	10	. 4						
7		200		•	Pl	01	id:	1	11	ip			L.		an		1	01	2	-	ay.	20
8	NI-				PI	al	nf.	9	0	Y.	1		6	12		100		014			ar	- 1
9		-				4			F	la	h+	6	d	r."	0	10		-		de		
10	~		-										ch	- 1							2.00	
11						_	_						_			10						
12			-													1						
13			-				_															
14																-						
10																100						


No information on sprinkler type or application rates, limited info on plant material

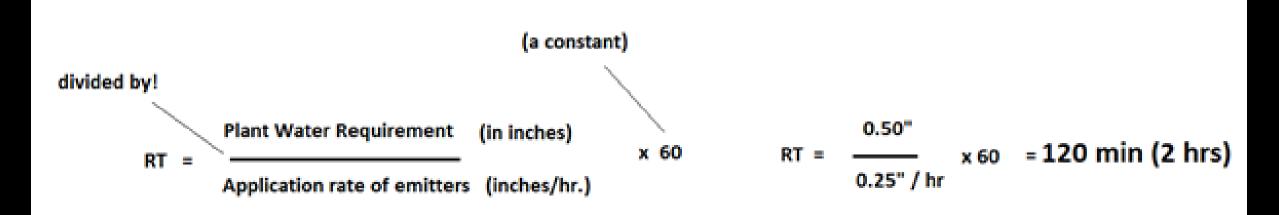

This residential landscape has flow information for all stations

The area in square feet of each valve circuit (hydrozone) is known so application rates can be calculated

The map makes scheduling easier. A separate sheet shows plant material by circuit. Note precipitation/application rates

Learning Objectives

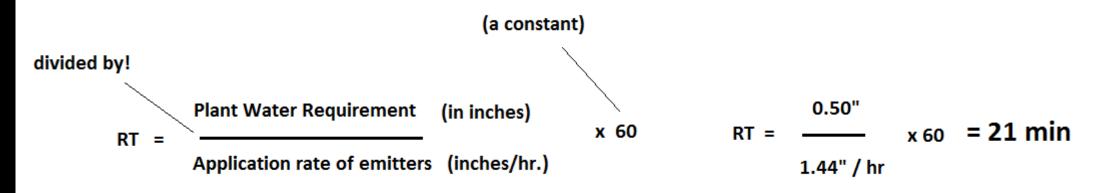
- Demonstrate an understanding of the resources available to determine plant water requirement CIMIS and WUCOLS
- Demonstrate an understanding of site data that must be collected to determine a drip system application rate.
 Process this information manually with the formula or the "APP" to develop an application rate.
- Develop an irrigation run time for a 3 day interval in July for low water use shrubs irrigated with a drip system


Learning Objectives

• Demonstrate an understanding of key design and installation criteria necessary to insure a viable drip system

Where we're trying to go today!

Match the Plant Water Requirement to the Irrigation Application Rate and develop a run time in minutes (without runoff)


Run Time Formula – Point Source Irrigation

Run Time Formula – Line Source Drip Irrigation

Determining Plant Water Requirements

CIMIS – (California Irrigation Management Information System)-Plant Water Requirement in Inches / Month ET_o – evapotranspiration – transpiration and evaporation are indicators of plant water use and this is expressed in inches

California Irrigation Management Information System (CIMIS)

CIMIS Monthly Average ETo Report

Rendered in ENGLISH Units. Printed on Monday, October 09, 2017

Average ETo Values by Station

Stn Id	Stn Name	CIMIS Region	Jan (in)	Feb (in)	Mar (in)	Apr (in)	May (in)	Jun (in)	Jul (in)	Aug (in)	Sep (in)	Oct (in)	Nov (in)	Dec (in)	Total (in)
131	Fair Oaks	SAV	1.13	1.78	3.28	4.54	6.40	7.44	7.90	7.02	5.13	3.31	1.59	1.01	50.53
							•								

CIMIS Region Abbreviations

7.5

What if your landscape is outside the area served by a CIMIS weather station – SPATIAL CIMIS

					Welcome jim Logoff Account
E.					CIMIS
					CALIFORNIA IRRIGATION MANAGEMENT INFORMATION SYSTEM CALIFORNIA DEPARTMENT OF WATER RESOURCES
HOME	STATIONS	DATA	SPATIAL	ESOURCES	
CIMIS Statio	n Reports			CIMIS Statio	on Reports FTP Reports My Reports Preferences
1. Select repor	t style and date range				More Info?
Create an Ho	•	PDF Report 🔹 ir	English Units • from	10/2/2017	to 10/9/2017

2. Select one-to-many stations. Click on Column headers to sort

Id	Name	Region	County	Status	Connect	Disconnect	
124	Panoche	San Joaquin Valley	Fresno	Active	7/27/1995	***	
125	Arvin-Edison	San Joaquin Valley	Kern	Active	3/22/1995		
126	San Benito	Monterey Bay	San Benito	Active	6/9/1994		i
129	Pajaro	Monterey Bay	Monterey	Active	9/13/1995		
131	Fair Oaks	Sacramento Valley	Sacramento	Active	4/18/1997		
135	Blythe NE	Imperial/Coachella Valley	Riverside	Active	1/16/1997		
136	Oasis	Imperial/Coachella Valley	Riverside	Active	1/7/1007		

So we know to a certainty how much water plants generally need in inches of water per month or per day from CIMIS - ET_0

How much water do specific ornamental shrubs trees and groundcovers need relative to the ET₀?

The Answer is WUCOLS! (water use classification of landscape species) a key resource for WELO

H PRINI

WUCOLS IV Water Use Classification of Landscape Species

Home Page

User Manual

Plant Search Instructions

Plant Search Database

Download WUCOLS IV Plant List

Download WUCOLS IV User Manual

Water Requirements for Turfgrasses

Partners

Acknowledgements

Home Page

GETTING STARTED

If you are using the WUCOLS list for the first time, it is essential that you read The manual contains very important information regarding the evaluation process water needs, plant types, and climatic regions. It is necessary to know this infor WUCOLS evaluations and the plant search tool appropriately. To access the *User* the tab (on left) and view specific topics.

Water conservation is an essential consideration in the design and management of California landscapes. Effective strategies that increase water use efficiency must be identified and implemented. One key strategy to increase efficiency is matching water supply to plant needs. By supplying only the amount of water needed to maintain landscape health and appearance, unnecessary applications that exceed plant needs

WUCOLS categorizes over 3,700 landscape plants as to their plant water use.

Categories of Water Needs									
Category	Abbreviation	Percentage of ETo							
High	Н	70-90							
Moderate/Medium	М	40-60							
Low	L	10-30							
Very Low	VL	< 10							

Species were evaluated as needing high (H), moderate/medium (M), low (L), and very low (VL) amounts of irrigation water. Expressed as a percentage of reference evapotranspiration $(ET_o)[1]$, these categories were quantitatively defined as follows. A High water use plant in an 8.0 inch (ETO) month at 80% would require 6.4" of water. (8.0" x 0.80 = 6.4")

A daily requirement is 0.21" (8.0/31)

WUCOLS categorizes over 3,700 landscape plants as to their plant water use.

Categories of Water Needs

Category	Abbreviation	Percentage of ET _o
High	Н	70-90
Moderate/Medium	М	40-60
Low	L	10-30
Very Low	VL	< 10

Species were evaluated as needing high (H), moderate/medium (M), low (L), and very low (VL) amounts of irrigation water. Expressed as a percentage of reference evapotranspiration $(ET_o)[1]$, these categories were quantitatively defined as follows. A Low water use plant in an 8.0 inch (ETO) month at 10% would require 0.80" of water. (8.0" x 0.10 = 0.80")

A daily requirement is 0.025" (0.80/31)

The state is broken down into six geographical regions that define use

Regions

Since substantially different climate zones exist in California, species were evaluated for regions that represent six different climatic conditions. These are not the only climate zones that exist in California, but they include much of the state where irrigated landscapes occur. For locations outside of the six regions, it is best to use species evaluations from a region that is most similar climatically to the location of interest.

Num	ber	WUCOLS Region	Sunset climate zones*	CIMIS ET ₀ zones**	Representative Cities
1		North-Central Coastal	14, 15, 16, 17	1, 2, 3, 4, 6, 8	Healdsburg, Napa, San Jose, Salinas, San Francisco, San Luis Obispo
2		Central Valley	8, 9, 14	12, 14, 15, 16	Auburn, Bakersfield, Chico, Fresno, Modesto, Sacramento
3		South Coastal	22, 23, 24	1, 2, 4, 6	Irvine, Los Angeles, Santa Barbara, Ventu Vista
4		South Inland	18, 19, 20, 21	9	Corona, Escondido, Pasadena, Riverside, San Bernardino, Santa Paula
5		High and Intermediate Desert	11	14, 17	Apple Valley, Barstow, Bishop, Lancaster, Lone Pine, Tehachapi
6		Low Desert	13	18	Borrego Springs, Blythe, Death Valley, El Centro, Needles, Palm Springs

We can research plant material on-line or export a database

WUCOLS IV Water Use Classification of Landscape Speci

Plant Search Database

Plant List for all Regions

3769 results North Central South In Valley Botanical Name Common Name Coastal Central Valley South Coastal Type Water Use Rhododendron spp. S N azalea Moderate/Medium Moderate/Medium High High (CA native and nonnative spp.) Rhododendron spp. rhododendron Moderate/Medium Moderate/Medium SN High High (CA native and nonnative spp.)

Two Resources on-line – Links are in your handout

- CIMIS local weather station or spatial CIMIS provides information based on ET_0 as to how many inches of water plants generally need
- WUCOLS indicates % of ET_{O} that should be replaced on a regional basis

How much water do sprinklers apply? Why is this important?

An Award Wining Landscape in Northern CA (They did not wand drip so they used PC bubblers)

2 foot diameter shrub 3.14 sq ft of canopy

There were two of these on a 2 foot shrub – ½ gpm which is 30 gallons per hour

Use the Ewing "APP" to calculate application rate

≻	1:25 PM	Ù
Tools	Irrigation	
Drip Irrigation	1	
Application Calculate ho	Rate ow much water to apply	0
Run Time Calculate th	e time needed to water per	0
Sprinklers		
Precipitatio	on Rate ow much water to apply	۲
Run Time Calculate th	e time needed to water per	0

•०००० AT&T 3	G 7:44	AM	
Irrigation	Irri	igation	
Drip Irrig Applicatio	ation - i n Rate		Send
Gallon	s per Hour	3	80
Area in So	quare Feet:	3.	14
Solution:	15.325 in.	per hour	Calculate

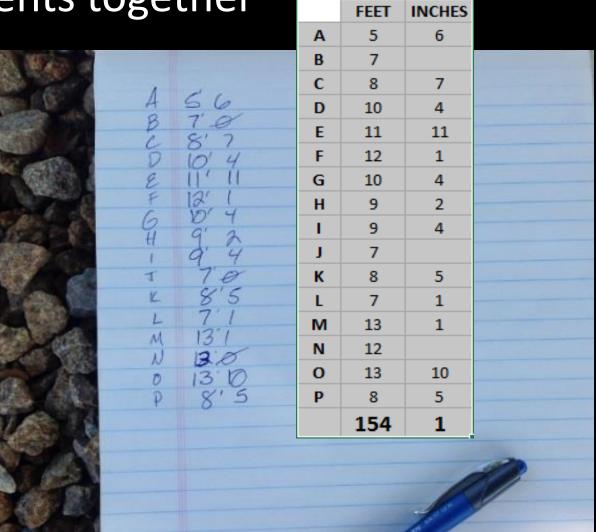
Use solution to calculate run time

Runoff because the clay soils with an intake rate of 0.10" per hour are overwhelmed with an application rate of 15 inches /hr.

Determining application rate of any drip irrigation zone (data to collect)

- Area that is served by the drip zone in square feet
- Circuit flow in cubic feet, or gallons per hour

Steps in calculating canopy area


- Activate the zone and operate until wet margins of the zone appear
- Measure the canopy area using the 16 point Ewing method

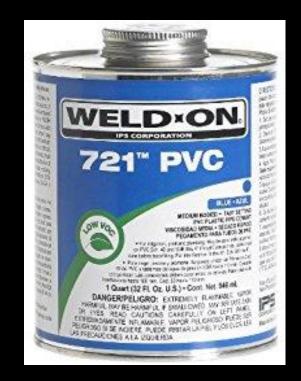
Sixteen Point Method – Determining the Average Perimeter (Radius) measure from the center to the canopy edge 16 times at 22.5 degree increments

Add the measurements together

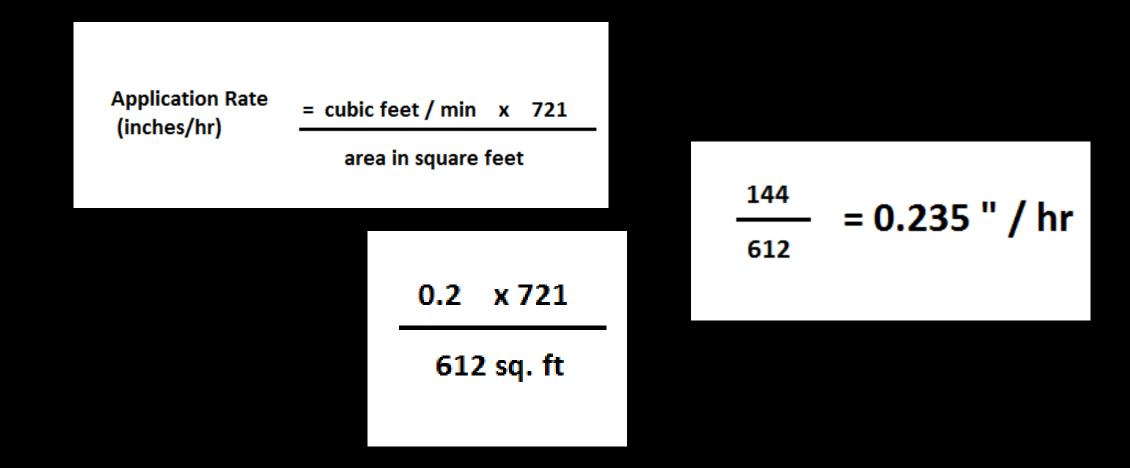
Access the tables to determine area in square feet!

	Area (square feet)	Sum of 16 perimeter measurements	Area (square feet)	Sum of 16 perimeter measurements	Area (square feet)
	295	155			
[314	160	1,142	305	2,48
	334	165	1,179	310	2,54
	355	170	1,218	315	2,59
	376	175	1,257	320	2,65
	398	180	1.296	325	2,71

Measure the flow to the zone in cubic feet in 1 minute



9 0 1 9 0 1 5 Cubic Feet 10 0 Becord Model 10 Description 10 Descr


Commercial meters $-1\frac{1}{2}$ " and larger – each revolution 10 cubic feet or 74.8 gallons – each 1/10th Is 7.48 gal Residential meters – 1" and smaller – each revolution 1 cubic foot or 7.48 gallons – each 1/10th Is 0.748 gal Let's calculate a drip zone application rate given the following area and flow

- Flow on the residential meter 2/10ths of a revolution in 1 minute
- Area is 612 square feet

Just remember - 721

Application Rate Formula and Calculation

Check it out with the "APP"

- 0.2 cubic feet per minute must be converted to GPH (gallons per hour) (0.2 x 7.48 = 1.496 gpm) x 60 = 90 gph
- Area is 612 sq. ft

What about application rates for linear drip

• Since it is a grid, you'll need to know the flow and the spacing!

	Clay	Loam	Sand
Nominal Emitter Flow Rate	0.4 gph	0.6 gph	1.0 gph
EZ-ID Color Code	Orange	Blue	White
Emitter Spacing	18*	12"	12"
Dripline Row Spacing	18*	18"	12"
Application Rate (Inches/Hour)	0.29	0.64	1.60
Time to Apply 1/4" of Water	53 mins.	23 mins.	10 mins.

		TURF					SHRUB & GROUNDCOVER																	
TECHLINE CV	CL	AY S	OIL	LO	AM S	OIL	SAN	IDY S	SOIL	COA	RSE	SOIL	CL	AY SI	DIL	LOA	AM S	OIL	SAN	IDY S	SOIL	COAI	RSE S	SOIL
EMITTER FLOW	0.2	26 GP	ΡH	0.	.4 GP	Н	0.	6 GPI	H	0.	9 G P	'H	0.2	26 GP	Ή	0.4	4 GPI	H	0.	6 GP	H	0.9	9 GPI	ł
EMITTER SPACING		18″			12"			12″			12"			18″			18″			12"			12"	
LATERAL (ROW) SPACING	18″	20″	22″	12″	14″	18"	12″	14″	18″	12″	14″	16″	18″	21″	24″	18"	21″	24″	16″	18″	20″	16″	18″	20″
BURIAL DEPTH		I	Bury e	evenly	r thro	ughou	it the	zone	from 4	"to 6			On-surface or bury evenly throughout the zone to a maximum of 6"											
APPLICATION RATE (INCHES/HOUR)	0.19	0.17	0.15	0.64	0.55	0.43	0.98	0.84	0.65	1.48	1.27	1.11	0.19	0.16	0.14	0.30	0.26	0.23	0.73	0.65	0.59	1.11	0.99	0.89
TIME TO APPLY ¼" OF WATER (MINUTES)	80	89	97	23	27	35	15	18	23	10	12	13	80	93	106	50	58	66	20	23	26	13	15	17
Following these maximum spacing guidelines, emitter flow selection can be increased if desired by the designer. 0.9 GPH flow rate available for areas requiring higher infiltration rates, such as coarse sandy soils.																								

Note: 0.4, 0.6 and 0.9 GPH are nominal flow rates. Actual flow rates used in the calculations are 0.42, 0.61 and 0.92 GPH.

You can measure the emitter spacing at 12 or 24" in the tube and measure the parallel row spacing But what is the emitter flow in GPH?

EMITTER FLOW (TIME TO FILL 2" CAP)								
EMITTER TYPE	GPH	FILL TIME						
POINT SOURCE	2.00	56 SECONDS						
POINT SOURCE	1.00	1 MIN 52 SECONDS						
LINE SOURCE	0.92	2 MIN 2 SECONDS						
LINE SOURCE	0.61	3 MIN 4 SECONDS						
POINT SOURCE	0.50	3 MIN 45 SECONDS						
LINE SOURCE	0.42	4 MIN 26 SECONDS						

So let's calculate with the "APP" a 12" x 12" spacing with a 1.0 gph emitter!

•••• AT&T 3G 7:38 PM					
Irrigation Irrigation		Driplir	ne Selection (Guidelines	
Drip Irrigation - 🥡 Application Rate	Send		Clay	Loam	Sand
Gallons per Hour		Nominal Emitter Flow Rate	0.4 gph	0.6 gph	1.0 gph
		EZ-ID Color Code	Orange	Blue	White
Area in Square Feet:		Emitter Spacing	18*	12"	12"
Solution: 1.604 in. per hour	Calculate	Dripline Row Spacing	18*	18"	12"
ومراجع والمراجع والمراجع والمراجع والمراجع المراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع		Application Rate (Inches/Hour)	0.29	0.64	1.60
Use solution to calculate r	un time	Time to Apply 1/4" of Water	53 mins.	23 mins.	10 mins.

So calculating "APP" rates for linear drip can be easier as tables are available

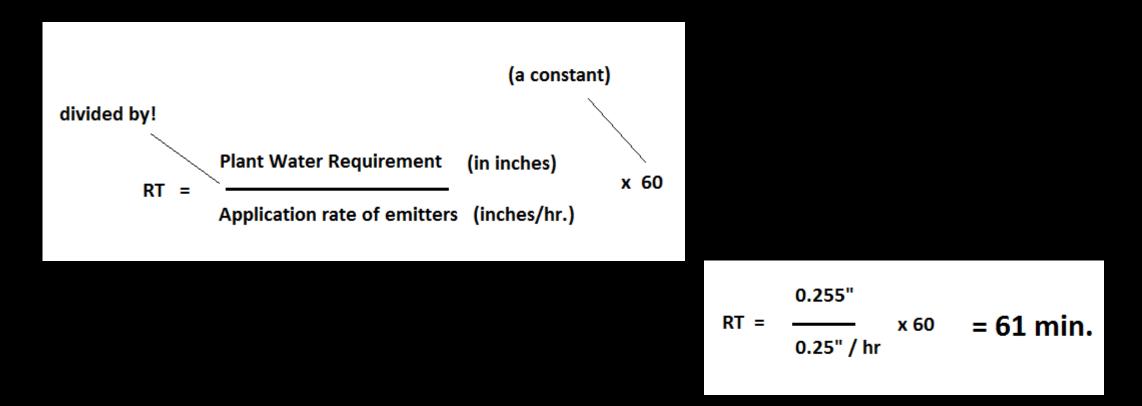
Let' complete our final objective

The criteria for scheduling

- Given a calculated application rate of 0.25" per hour
- A low water use hydrozone in Sacramento in July
- Watering every 4 days

	Ornamental Shrubs with a species factor							
	DULQ	0.9						
	PR Rate	0.25	inches / hr.					
	RTM	1.06						
		Fair Oaks	Fair Oaks	Fair Oaks				
		ET ₀	ET ₀	Orn. Shrub				
		Avg	Avg.	Req't				
		Monthly	daily	daily				
31	Mar	3.28	0.1058	0.0529				
30	Apr	4.51	0.1503	0.0752				
31	May	6.46	0.2084	0.1042				
30	Jun	7.44	0.2100	0.1240				
31	Jul	7.91	0.2552	0.1276				
31	Aug	7.02	0.0005	0.1132				
30	Sep	5.13	0.1710	0.0855				
31	Oct	3.33	0.1074	0.0537				

Categories of Water Needs


Category	Abbreviation	Percentage of ET _o
High	Н	70-90
Moderate/Medium	М	40-00
Low	L	10-30
Very Low	VL	< 10
pocios woro ovaluatod	as pooding high (H)	moderate/medium (M)

Species were evaluated as needing high (H), moderate/medium (M), low (L), and very low (VL) amounts of irrigation water. Expressed as a percentage of reference evapotranspiration $(ET_o)[1]$, these categories were quantitatively defined as follows.

4 days x $0.2552 = 1.028 \text{ ET}_{O}$

1.028 ET_o x 0.25 = 0.255" plant water requirement after 4 days

Run Time Calculation – Point Source

What about runoff????

		Application Rate - in/hr		Rate - in/hr		Rate - in/hr	
0.10	60	0.60	10	1.05	6	1.50	4
0.15	40	0.65	9	1.10	5	1.55	4
0.20	30	0.70	9	1.15	5	1.60	4
0.25	24	0.75	8	1.20	5	1.65	4
0.30	20	0.80	8	1.25	5	1.70	4
0.35	17	0.85	7	1.30	5	1.75	3
0.40	15	0.90	7	1.35	4	1.80	3
0.45	13	0.95	6	1.40	4	1.85	3
0.50	12	1.00	6	1.45	4	1.90	3

Minutes of run time before run off occurs at varying application rates on flat clay

All bets are off if installation is poor or pressure is low

- 10 psi minimum for point source systems
- 15 psi for line source or emitters will not open
- Arrange point source emitters so all plant material on the hydrozone has the same application rate (see attached sheet)
- Do not use 0.9 gph or 1 gph linear tubing
- Keep line source tubing parallel

The Pressure Test

Learning Objectives

- Demonstrate an understanding of the resources available to determine plant water requirement CIMIS and WUCOLS
- Demonstrate an understanding of site data that must be collected to determine a drip system application rate.
 Process this information manually with the formula or the "APP" to develop an application rate.
- Develop an irrigation run time for a 3 day interval in July for low water use shrubs irrigated with a drip system

Learning Objectives

• Demonstrate an understanding of key design and installation criteria necessary to insure a viable drip system

Certificate of Attendance Andrew Alday

For attending the workshop

Get a Grip on Drip:

Drip Irrigation Workshop for Landscape Managers 4 hours – October 10th, 2017

meeni

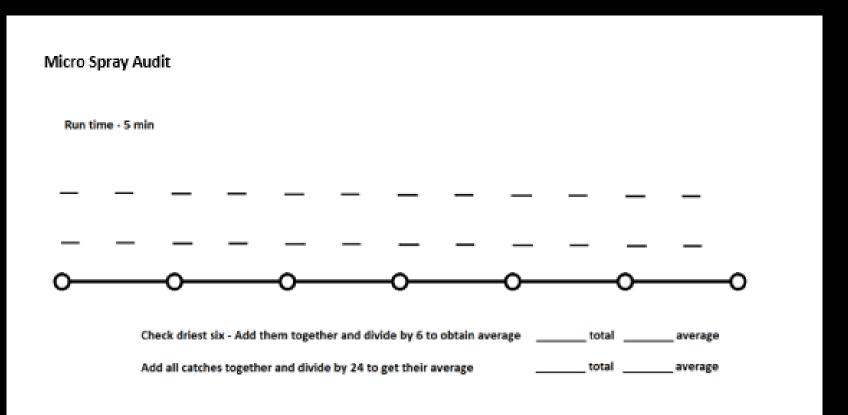
Jim Borneman, Vice President Emeritus Ewing Irrigation Products

Willia 26

William Granger Water Conservation Administrator City of Sacramento

This certificate may be used for obtaining Continuing Education Units (CEUs) for National Association of Landscape Professionals (NALP) or Irrigation Association (IA) certifications

UCDAVIS


University of California Agriculture and Natural Resources

SACRAMENTO Department of Utilities

Exercises – "A" Group – Micro Spray Audit

Exercises – B Group – Area Measurement and Application Calculation

Determining Application Rates with cap							
	A	в	c	D	E		
Time to fill				_	_		
Flow	_	_	_	_	_		
Canopy Diameter	2 ft	5 ft	12" x 12" sp	12" x 24" sp	10 ft		
Area							
Application Rate							

stim	ating Irregularly shaped Areas			
leas	urement		-	
	A			
	8			
	c			
	D		1 Sec. 16	and the second
	E	The second		La de la serie
	F	CALL ON CON		None -
	G	A CARLON	5	
	н	and a second		
	1	and The Case		
	1	Real Property lies	the second	A Constanting
	к	T +	The second	
	L		and a start	and the second
	M	and the second	18-20	1 COL
	N			
	0			
	P			
		EMITTER FLOW (TIME TO FI	LL 2" CAP)
	TOTAL			
	AVG/16	EMITTER TYPE	GPH	FILL TIME
	SQ, FT			
		POINT SOURCE	2.00	56 SECONDS
	METER	POINTSOURCE	1.00	1 MIN 52 SECONDS
	FLOW	LINE SOURCE	0.92	2 MIN 2 SECONDS
	CFM	LINE SOURCE	0.61	3 MIN 4 SECONDS
		POINT SOURCE	0.50	3 MIN 45 SECONDS
	PR Rate	LINE SOURCE	0.42	4 MIN 26 SECONDS