
DWR – CCUH at UC Davis Drought Conference – May 29th, 2015

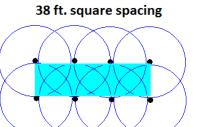
Sprinkler precipitation rates – the key to controlling irrigation runoff

Spray nozzles have a high precipitation rate that frequently results in irrigation runoff. The precipitation rate will vary with pressure and spacing. At 30 psi and spaced in a square pattern the precipitation rate is 1.58" per hour. The triangular pattern has slightly higher precipitation rates due to the tighter row spacing of 13 ft. at 1.83"

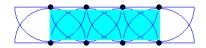
30° Traje	ctory				A
Nozzle	Pressure psi	Radius ft.	Flow GPM	Precip In/h	Precip In/h
15F	15	11	2.60	2.07	2.39
	20	12	3.00	2.01	2.32
	25	14	3.30	1.62	1.87
	30	15	3.70	1.58	1.83
15H	15	11	1.30	2.07	2.39
	20	12	1.50	2.01	2.32
	25	14	1.65	1.62	1.87
	30	15	1.85	1.58	1.83

Verify the working water pressure at the spray nozzle to be a minimum of 30 psi. In the case of the 15 Series nozzle, any pressure less than 30 psi requires a closer spacing than 15 ft. If the sprinklers are operating at 20 - 25 psi and spaced at 15 ft there will be serious coverage (uniformity) problems. Measure water pressure as the circuit operates at the first and last sprinkler on the circuit. Verify spacing to be no greater than the radius. Sprinklers should be spaced in a square or triangular pattern with consistent spacing between heads.

Test working water pressure at the first and last sprinkler with a pressure tee and gauge.



Verify spacing between heads with a tape measure. At 30 psi spray heads should be spaced at no greater than their series, i.e 15 series at 15 ft, 12 series at 12 ft, etc.


Rotor sprinklers rotate a single or multiple streams to achieve coverage. In general, the end of the stream from one sprinkler should hit right at the base of the adjacent sprinkler. The pressure requirement at the nozzle is dependent on the spacing and the nozzle installed in the sprinkler. Performance charts indicate a radius(spacing interval) that can be achieved with a particular nozzle at varying pressures. Generally, these sprinklers have a higher pressure requirement than spray nozzles. As a consequence low nozzle pressure is a common problem. Pressure, along with spacing must be verified in the field. Precipitation rate data may only be relied upon when pressure, nozzle, and spacing agree with nozzle performance data. These sprinklers have lower precipitation rates than sprays and therefore can be run for longer periods before runoff occurs.

	Red Stand ormance D		le		
Nozzle	Pressure PSI	Radius ft.	Flow GPM	Precip	in/hr
1	30	28'	0.5	0.12	0.14
	40	29'	0.6	0.14	0.16
	50	29'	0.7	0.16	0.19
	60	30'	0.8	0.17	0.20
2	30	29'	0.7	0.16	0.19
	40	30'	0.8	0.17	0.20
	50	30'	0.9	0.19	0.22
	60	31'	1.0	0.20	0.23
3	30	30'	0.9	0.19	0.22
	40	31'	1.0	0.20	0.23
	50	31'	1.2	0.24	0.28
	60	32'	1.3	0.24	0.28
4	30	32'	1.2	0.23	0.26
	40	33'	1.4	0.25	0.29
	50	34'	1.6	0.27	0.31
	60	34'	1.8	0.30	0.35
5	30	34'	1.6	0.27	0.31
	40	36'	1.8	0.27	0.31
	50	38'	2.0	0.27	0.31
	60	38'	2.2	0.29	0.34
6	40 50 60	34' 36' 38' 38'	2.0 2.4 2.7 2.9	0.33 0.36 0.36 0.39	0.38 0.41 0.42 0.45

These charts represent precipitation rates at half circle or 180 degree setting. For full circle operation divide the chart values by 2!

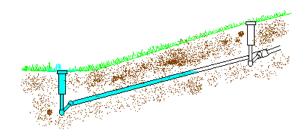
#5 noz. - 2.0 gpm @ 50 psi at 360 deg precipitation rate = 0.135" / hr

#5 noz - 2.0 gpm @50 psi at 180 deg (half circle) precipitation rate = 0.27" / hr.

The pitot tube and pressure gauge are used to measure nozzle pressure which is evaluated against nozzle performance charts

Suggested maximum run times on clay soil before runoff occurs (on flat surfaces)

infiltration rate - 0.10" / hr


rotors rotors rotor spray spray spray rotors rotors 1.6" / hr 1.8" / hr 2" / hr 0.25"/hr 0.35" / hr 0.45"/hr 0.55"/hr 0.65"/hr 4 min 4 min 24 min 17 min 13 min 11 min 9 min

Suggested maximum run times on clay loam soil before runoff occurs (on flat surfaces)

infiltration rate - 0.16" / hr

rotor spray spray spray rotors rotors rotors rotors 1.6" / hr 1.8" / hr 2" / hr 0.25"/hr 0.35" / hr 0.45"/hr 0.55"/hr 0.65"/hr 6 min 5 min 4 min 38 min 27 min 21 min 17 min 14 min

Low head drainage occurs in lateral sprinkler piping after the irrigation valve has shut down. When heavy clay soils are being irrigated, multiple cycles (usually 6-8) must occur every day that irrigation takes place. This necessary cycling process introduces the problem of low head drainage. This problem may be resolved with addition of check valves which may be retrofitted into the base of spray head bodies.

It is not unusual to find irrigation valves with spray and rotor type sprinklers plumbed together. This is never acceptable and should be corrected because of the different precipitation rates of the two types!

While low pressure at spray nozzles is frequently encountered, it is not unusual to find spray systems with excessive pressure. When pressure exceeds 45 psi, the sprinkler body should have a pressure regulating feature. This feature, like the anti-drain check valve, may be retrofitted into an existing spray body without digging up the sprinkler When sprinkler inlet pressures exceed 75 psi a regulator must be installed at the valve or backflow prevention device location.

Spray heads operating at 90 psi. This problem was corrected with the addition of a regulator feature on the valve.

Internal pressure regulating device is designed for inlet pressures between 45 and 75 psi

Same circuit operating at 30 psi!

Managing the Irrigation Controller in a Drought

The amount of irrigation water applied to the landscape varies with the type of plant material and the precipitation rate of the sprinklers. The environmental factors that drive plant water use are temperature, wind, solar radiation, humidity, and ground temperature and collectively they generate a number known as Evapotranspiration (ET). These factors are nearly impossible for the landscape manager to evaluate in the field. The State of California manages a network of computerized weather stations linked to a free website in a program known as CIMIS (California Irrigation Management Information System). There are more than 150 of these stations throughout the state. They provide the landscape manager with a number that represents the inches of water plants generally need in a month, week, or day. The number available from the local weather station is known as ETo or reference ET. There are many regions of the state that lack a local weather station. In these instances tables are available providing monthly averages in the Water Efficient Landscape Ordinance (WELO) which is also available on line.

Monthly Average ETo Report

California Irrigation Management Information System (CIMIS) Rendered in ENGLISH Units.

Printed on Wednesday, May 27, 2015

Average ET	To Values by	y Station													
Stn Id	Stn Name	CIMIS Region	Jan (in)	Feb	Mar (in)	Apr (in)	May (in)	Jun (in)	Jul (in)	Aug	Sep (in)	Oct	Nov (in)	Dec	Total
70	М	SJV	(in)	(in)	3.53	5.05	(iii) 6.78		7.96	(in) 7.03		(in) 3.37		(in)	(in) 52.29
70	Manteca	SJV	1.11	1.92	3.53	5.05	0.78	7.71	7.96	7.03	5.15	3.37	1.67	1.01	52.29

http://www.cimis.water.ca.gov/

http://ucanr.edu/sites/WUCOLS/

Water Efficient Landscape Ordinance (WELO) http://www.water.ca.gov/wateruseefficiency/landscapeordinance/

Every plant has a different water requirement relative to ET_0 based upon the landscape coefficient or K_L . The primary factor that drives that landscape coefficient is the species factor. Our biggest concern in the drought is the water requirement for turfgrass as it consumes the bulk of the landscape water. The plant water requirement ET_L is obtained for any period by multiplying the $ET_0 \times K_L$. In a traditional year cool season turfgrass such as fescue, Kentucky Bluegrass, or rye have a species factor of 70 percent or 0.70. In a drought we reduce this species factor and in turn the landscape coefficient (K_L) to 60 percent or 0.60. This follows guidelines developed by turfgrass experts at the University of California at Davis and Riverside.

July ET_L in a traditional year – ET_O (7.96") x K_L (0.70 for cs turf) = 5.57" / month (Manteca #70)

July ET_L in a drought year – ET_O (7.96") x K_L (0.60 for cs turf) = 4.78" / month

The water savings associated with this recommendation will save 0.79" in the peak month of July which is a 14% reduction in water use!

The development of an irrigation schedule is based on the average daily ET_L (plant water requirement) In the month of July. In Stockton, we have an ET_L of 4.78". The objective is to establish an average daily ET_L which in this case is 0.154" per day (4.78" / 31 = 0.154"). The replacement for every 4th day watering for turf in a typical July is 0.62 inches (4 x 0.154"). If we were watering on a flat clay surface the infiltration rate or maximum intake rate of the soil is 0.08 inches per hour. It would be necessary to have 8 cycles or start times (8 x 0.08 = 0.64) to avoid runoff. Apply 0.08", let it soak in and do this for 8 cycles, regardless of sprinkler type!

Daily	Sun	Mon	Tue	Wed	Thur	Fri	Sat	
ETL	0.154	0.154	0.154	0.154	0.154	0.154	0.154	
		'						
			Water				Water	
JULY ET	L		Tues				Friday	
			a.m. & p	o.m.			a.m. & p	.m.
			replace				replace	
			0.462"	(3 days)			0.62" (4	days)

On Friday the water requirement is 0.62". Regardless of the type of sprinkler, the soil infiltration or intake rate of 0.08" for clay (in this case) dictates the maximum amount of water applied to be 0.08" before runoff. Some sprinklers such as rotors and drip apply water more slowly and can have longer run times. Spray type sprinklers have a much higher precipitation rate so their run times to reach runoff are shorter. The sprinkler does not dictate the number of repeats rather it is the soil type! So the number of cycles required on Friday is 8 (0.62 /0.08 = 8).

			PROC	GRAI	MΑ				PRO	GRA	МВ					PRO	GRA	M C	
DAY OF THE WEEK		MO TU	WE	TH	FR	SA SI	Ј МО	TU	WE	TH	FR	SA	SU	МО	TU	WE	TH	FR	SA SU
INTERVAL (Choose 1 to 3	1 days)																		
	1	9:3	0 p.m.					2:30	a.m										
PROGRAM	2	11:	00 p.n	n.				4:00	a.m										
START TIMES	3	12:	30 a.m	۱.				5:30	a.m										
	4	1:0	0 a.m.					7:00	a.m										
STATION LOCATION		ST	ATION	I RU	N TIN	ME		STA	TIOI	N RU	JN TI	ME		STATION RUN TIME			ME		
1 Front Lawn - Sp	rays																		

The next step in scheduling is to determine the run time in minutes required for Friday. We use a simple run time formula RT = ET_L (turf water requirement) / PR (precipitation rate) x 60 (constant). In this example the sprinkler is a 15 ft spray spaced square at 30 psi with a precipitation rate of 1.58" / hr. Recall the Friday ET_L so the run time is as follows ET_L (0.62) / PR (1.58) x 60 = 23.54 minutes. We've previously determined that 8 cycles are necessary to avoid runoff. We simply divide the 24 minute run time by 8 which means eight, 3 minute cycles. On Program A we'll water 3 minutes per cycle x 8 starts = 24 minutes. Two programs, A and B, are necessary to obtain 8 cycles.

(plant water requirement)

$$RT = \frac{ET_L}{PR} \times 60$$
(precipitation rate)

			PROGRAM A	PROGRAM B	PROGRAM C
DAY O	F THE WEEK		MO TU WE TH FR SA SU	MO TU WE TH FR SA SU	MO TU WE TH FR SA SU
INTER	VAL (Choose 1 to 3	31 days)			
		1	9:30 p.m.	2:30 a.m.	
P	ROGRAM	2	11:00 p.m.	4:00 a.m.	
ST	ART TIMES	3	12:30 a.m.	5:30 a.m.	
		4	1:00 a.m.	7:00 a.m.	
STATION	LOCATION		STATION RUN TIME	STATION RUN TIME	STATION RUN TIME
1	Front Lawn - Sp	rays	3 min.	3 min.	
2					

(4 x 3 min = 12 minutes)

 $(4 \times 3 \text{ min} = 12 \text{ minutes})$

We've completed the schedule for station 1 for the spray heads on the turf for Friday. The irrigation water that we had to apply (0.62") and requires 8 repeats to avoid illegal runoff

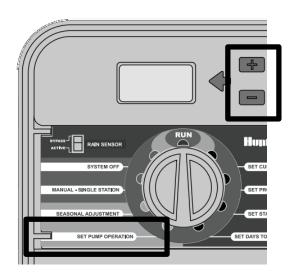
The water requirement for Tuesday replaces 3 days of turf water use or 0.462 inches of water. Since the water requirement is different on Tuesday, 0.462", as opposed to 0.62" on Friday, we'll have a different run time so a different program is required. We'll utilize program C, for station 1 on Tuesday. The amount of water required on Tuesday replaces turf water use of 0.462". The run time for program C (Tuesday) is RT = $ET_L / PR \times 60 (0.462 / 1.58 \times 60) = 17.54$ min. Since 17 or 18 minutes cannot be divided by 4 starts we must select a 16 or a 20 minute run time. Since there are only 4 start times left we'll be forced to increase run time to four minutes. The run time for Tuesday is four, 4 minute cycles for a total of 16 minutes. We're doing this because a 20 minute run time would result in four, five minute cycles which might cause runoff! We're stretching the programming capabilities of this controller to the max due t the severe programming requirements of two days per week!

We've utilized programs A, B, and C for the turf stations. The drip and shrub stations must be assigned to run on days that lawns water which is not a problem due to the long intervals between watering days

			PROGRAM A	PROGRAM B	PROGRAM C
DAY O	F THE WEEK		MO TU WE TH FR SA SU	MO TU WE TH FR SA SU	MO TU WE TH FR SA SU
INTERV	/AL (Choose 1 to 3	31 days)			
		1	9:30 p.m.	2:30 a.m.	10:15 p.m.
P	ROGRAM	2	11:00 p.m.	4:00 a.m.	12:15 a.m.
ST	ART TIMES	3	12:30 a.m.	5:30 a.m.	2:15 p.m.
		4	1:00 a.m.	7:00 a.m.	4:15 p.m.
STATION	LOCATION		STATION RUN TIME	STATION RUN TIME	STATION RUN TIME
1	Front Lawn - Sp	rays	3 min.	3 min.	
2					

(4 x 3 min = 12 minutes)

 $(4 \times 3 \text{ min} = 12 \text{ minutes})$


 $(4 \times 4 \min = 16 \min \text{ minutes})$

The previous special program addresses the water needs of the plant material on the designated day schedule of two days per week which is the 2015watering restriction for Stockton. Some water purveyor's may already have landscape water conservation programs in place that allow watering three times per week which would require a lesser degree of programming complexity.

The previous schedule is what is known as a "lower boundary" of watering time which does not reflect typical spray irrigation systems which have problems with uniform coverage and have poor distribution uniformity

A landscape water audit would reveal the distribution uniformity DU_{LQ} of the system and once this is known we can develop a scheduling or system multiplier. The spray system we audited for this example had a DU_{LQ} of 56 percent or 0.56. A scheduling or run time multiplier indicates how much we will have to increase the lower boundary run times to deliver adequate water to the drier parts of the irrigation circuit. The run time or scheduling multiplier for 56 percent is 1.36. The Tuesday run time on the lower boundary was 16 minutes or three, 3 minute cycles. The 16 minute run time would be increased 1.36 times to compensate for poor uniformity which is 22 minutes. The upper boundary of run time for Tuesday is 4 cycles of 6 minutes which would likely cause runoff! Consider changing to a controller that has more start times and programs or a cycle soak feature

One important feature of more modern controllers is the percentage or seasonal adjust key or +/- key. It allows adjustment of an entire program by percentages. Heavy clay soils and spray heads render this a meaningless feature. Imagine that there is a 3 minute run time that needs a 10% reduction. The controller times in 1 minute increments so the % key only works for 33% changes (3 minutes reduced to 2 minutes is a 33% change). The only options we have with these short run times is to eliminate a start time or decrease a run time. This is exactly why rotors, with their lower precipitation rates, and longer run times are a better option than sprays. If the rotor station was set for three 10 minute cycles, a 90% adjust would reduce the run time to 9 minutes!

Ultimately we need to be very creative in dealing with drought conditions where reduced watering days may be imposed by cities or water agencies. There are many limitations to controller programming when this occurs and they are acutely felt during a drought. Another serious limitation in the more arid regions of the state is the limitation of the water meter to apply water in two days that would normally be applied in 4 to 7 days per week!

	Irriga	tion Sc	hedule		Stockt	on, CA				b	
	(Sched	ule base	d onb CIMI	S station #	† 70 - Man	teca, CA)		CIII	ÌΠG	
	Pop l	Jo Spra	y Heads	/ Cool S	eason '	Turf			ьш	ш	
			with a K _T spe	•			0.60				
	DULO	0.56	interior in a per	1	Every 4th		0.00	Every 3rd	ldav		
	PR Rate		inches / hr.		watering	uay		watering		— i	
	RTM	1.36	menes / m.		watering			watering		_ 1	
		1.50								_ 1	
		Stockton	Stockton	Stockton	Lower	Upper		Lower	Upper		
		ET ₀	ET ₀	CS Turf	Bndry.	Bndry.		Bndry.	Bndry.	-	0
		Avg	Avg.	Reg't		Run Time		-	Run Time	_	
		Monthly	_	daily	min.	min.		min.	min.		
31	Mar	3.53	0.1139	0.0683	10	14		8	11		
30	Apr	5.05	0.1683	0.1010	15	21		12	16		
31	May	6.78	0.2187	0.1312	20	27		15	20	e despession	27 V
30	Jun	7.71	0.2570	0.1542	23	32		18	24		SIN
31	Jul	7.96	0.2568	0.1541	23	32		18	24		S
31	Aug	7.03	0.2268	0.1361	21	28		16	21		
30	Sep	5.15	0.1717	0.1030	16	21		12	16		
31	Oct	3.37	0.1087	0.0652	10	13		7	10		
		46.58									
	MP R	otator	s / Cool S	Season 7	Turf					40. 50	
	Cool Se	ason Turf	with a K _T spe	cies factor	(maximun	n stress)	0.60				
	DU_{LQ}	0.72			Every 4th	day		Every 3rd	day		
	PR Rate	0.43	inches / hr.		watering			watering			
	RTM	1.2									
		Stockton	Stockton	Stockton	Lower	Upper		Lower	Upper	and the same	Ye
		ET ₀	ET ₀	CS Turf	Bndry.	Bndry.		Bndry.	Bndry.		
		Avg	Avg.	Req't	Run Time	Run Time		Run Time	Run Time		
		Monthly	daily	daily	min.	min.		min.	min.		
31	Mar	3.53	0.1139	0.0683	38	46		29	34		
30	Apr	5.05	0.1683	0.1010	56	68		42	51		
31	May	6.78	0.2187	0.1312	73	88		55	66	17	1 N/A
30	Jun	7.71	0.2570	0.1542	86	103		65	77		
31	Jul	7.96	0.2568	0.1541	86	103		64	77	ER PER	1000
31	Aug	7.03	0.2268	0.1361	76	91		57	68		
30	Sep	5.15	0.1717	0.1030	57	69		43	52		
31	Oct	3.37	0.1087	0.0652	36	44		27	33		
			M GVG	CTI CO					1000		
		MAXIMU	M CYCLE LEN	IGTH (IN M							
			SPRAYS		4 MINUTE				SPACING)		
			ROTORS	CE DRIB	14 MINU				ECIP RATE)	anic)	
			LINE SOUR	CE DRIP	4 MINUTE	:5	(0.9	3PH - 12"	X 12" SPAC	ING)	

	Orname	ental Shru	bs with a sp	ecies factor	K _P (max st	ress)	0.40			1	
	DULQ	0.9			Every 4th	day		Every 3rd	day	The say	
	PR Rate	1.42	inches / hr.		watering			watering		15 3	No.
	RTM	1.06								1	
		Stockton	Stockton	Stockton	Lower	Upper		Lower	Upper		
		ET ₀	ET ₀	Orn. Shrub	Bndry.	Bndry.		Bndry.	Bndry.		
		Avg	Avg.	Req't	Run Time	Run Time		Run Time	Run Time		
		Monthly	daily	daily	min.	min.		min.	min.		and the same
31	Mar	3.53	0.1139	0.0455	8	8		6	6	A A	
30	Apr	5.05	0.1683	0.0673	11	12		9	9		
31	May	6.78	0.2187	0.0875	15	16		11	12	11/1	
30	Jun	7.71	0.2570	0.1028	17	18		13	14	1-1	
31	Jul	7.96	0.2568	0.1027	17	18		13	14		Here.
31	Aug	7.03	0.2268	0.0907	15	16		11	12	The same	
30	Sep	5.15	0.1717	0.0687	12	12		9	9		
31	Oct	3.37	0.1087	0.0435	7	8		6	6		
	Drip /	/ Point	Source -	randon	n spacir	ng - 0.2	5"/	hr. PR			
	Orname	ntal Shru	bs with a sp	ecies factor	K _p (max st	ress)	0.40				
	DULQ	0.9			Every 4th	day		Every 3rd	day	_	
	PR Rate	0.25	inches / hr.		watering			watering			
	RTM	1.06									
		Stockton	Stockton	Stockton	Lower	Upper		Lower	Upper		
		ET ₀	ET ₀	Orn. Shrub	Bndry.	Bndry.		Bndry.	Bndry.		•
		Avg	Avg.	Req't	Run Time	Run Time		Run Time	Run Time		
		Monthly	daily	daily	min.	min.		min.	min.		
31	Mar	3.53	0.1139	0.0455	44	46		33	35		
30	Apr	5.05	0.1683	0.0673	65	69		48	51		
	May	6.78	0.2187	0.0875	84	89		63	67		
31	Jun	7.71	0.2570	0.1028	99	105		74	78		
31 30	Jul	7.96	0.2568	0.1027	99	105		74	78	-	~
		7.03	0.2268	0.0907	87	92		65	69	\ \	
30	Aug		0.1717	0.0687	66	70		49	52		
30 31	Aug Sep	5.15				44		31	33		
30 31 31		5.15 3.37	0.1087	0.0435	42	77					
30 31 31 30	Sep							A 95206	4477	(209) 948	0000

	luu!	Alas C-	واريان		Charles						
	_		hedule			on, CA					
			d onb CIMIS)		HIII	ľΠG	
	Pop U	Jp Spra	y Heads	/ Warm	Seaso	n Turf					
	Warm S	eason Tur	f with a K _T sp	ecies facto	or (maximu	ım stress)	0.40				
	DULQ	0.56			Every 4th	day		Every 3rd	day		i
	PR Rate	1.58	inches / hr.		watering			watering			
	RTM	1.36									7
											l
		Stockton	Stockton	Stockton	Lower	Upper		Lower	Upper		L _
		ET ₀	ET ₀	WS Turf	Bndry.	Bndry.		Bndry.	Bndry.	-	0
		Avg	Avg.	Req't	Run Time	Run Time		Run Time	Run Time		
		Monthly	daily	daily	min.	min.		min.	min.		
1	Mar	3.53	0.1139	0.0455	7	9		5	7	1000	VALUE IS
0	Apr	5.05	0.1683	0.0673	10	14		8	10		N. P.
1	May	6.78	0.2187	0.0875	13	18		10	14	可割束	
0	Jun	7.71	0.2570	0.1028	16	21		12	16		CAR CANO
1	Jul	7.96	0.2568	0.1027	16	21		12	16		
1	Aug	7.03	0.2268	0.0907	14	19		10	14		
0	Sep	5.15	0.1717	0.0687	10	14		8	11		
1	Oct	3.37	0.1087	0.0435	7	9		5	7		
		46.58									
			s / Warm							4 1	
	Warm S	eason Tur	f with a K _T sp	pecies facto	or (maximu	ım stress)	0.40			A Comment	
	DULQ	0.72			Every 4th	day		Every 3rd	day		
	PR Rate	0.43	inches / hr.		watering			watering			1
	RTM	1.2									
		Stockton	Stockton	Stockton	Lower	Upper		Lower	Upper	14000	
		ET ₀	ET ₀	WS Turf	Bndry.	Bndry.		Bndry.	Bndry.		
		Avg	Avg.	Req't	Run Time	Run Time		Run Time	Run Time		
		Monthly	daily	daily	min.	min.		min.	min.		
1	Mar	3.53	0.1139	0.0455	25	31		19	23	200	200
0	Apr	5.05	0.1683	0.0673	38	45		28	34		
1	May	6.78	0.2187	0.0875	49	59		37	44	7/1	1 1/45
0	Jun	7.71	0.2570	0.1028	57	69		43	52		
1	Jul	7.96	0.2568	0.1027	57	69		43	52	E. S. WYON	
1	Aug	7.03	0.2268	0.0907	51	61		38	46		
0	Sep	5.15	0.1717	0.0687	38	46		29	34		
1	Oct	3.37	0.1087	0.0435	24	29		18	22		
		MAXIMU	M CYCLE LEN	GTH (IN M	INUTES) TO	AVOID R	UNOF	F ON CLAY	SOILS		
			SPRAYS		4 MINUTE			T SQUARE			
			ROTORS		14 MINU	TES	(0.43	" / HR PRE	CIP RATE)		
			LINE SOUR	CE DRID	4 MINUTE		100	3PH - 12"	A A OH CDA	CINICA	

Precipitation Rate Tables - Low Volume/Drip-Micro Irrigation Point Source Emiiters or Micro Spray

(METER FLOW)

M U

N.

AREA IN SQUARE FEET(CANOPY AREA)

0.41 225 250 275 300 325 350 375 400 425 450 475 500 525 550 575 600 625 650 675 700 0.11 0.14 0.29 0.43 0.46 45.0 0.57 9.64 0.18 0.21 0.25 0.32 0.36 0.39 0.50 0.61 0.68 0.71 0.19 0.22 0.41 0.48 0.74 0.12 0.11 0.15 0.15 0.26 0.31 0.30 0.35 0.33 0.39 0.37 0.46 0.44 0.54 0.52 0.58 0.56 0.62 0.59 0.65 0.63 79.0 69.0 0.73 0.70 0.50 0.19 0.23 0.27 0.42 0.77 0.13 0.12 0.17 0.16 0.33 0.32 0.38 0.36 0.42 0.40 0.46 0.44 0.50 0.48 0.59 0.56 0.63 0.60 0.67 0.64 0.21 0.20 0.25 0.24 0.29 0.28 0.54 0.52 0.71 0.68 0.75 0.72 0.80 0.76 0.10 0.10 0.09 0.09 0.00 0.14 0.13 99'0 0.18 0.18 0.48 0.83 0.41 0.39 0.64 0.61 0.83 0.79 0.23 0.22 0.28 0.26 0.32 0.31 0.37 0.35 0.46 0.44 0.55 0.53 0.60 0.57 0.73 0.70 0.78 0.74 0.50 69.0 0.87 0.92 0.14 0.34 0.19 0.24 0.67 0.82 0.30 0.29 0.41 0.39 0.46 0.43 0.48 0.53 0.63 0.76 0.72 0.81 0.77 0.91 0.61 0.58 0.91 0.87 0.25 0.35 0.51 0.71 0.86 0.15 0.20 99.0 1.01 0.56 96.0 0.11 0.16 0.43 0.21 0.27 0.32 0.37 0.48 0.54 0.59 0.64 0.70 0.75 0.80 0.86 0.91 96.0 1.02 1.07 0.28 0.34 0.40 0.45 0.51 990 0.74 0.79 0.85 0.91 96.0 1.08 113 0.17 0.23 0.57 0.62 1.02 0.18 0.16 0.15 0.14 0.13 0.12 0.11 0.18 0.24 0.54 0.78 0.84 0.90 1.14 0.30 0.60 99.0 0.72 96.0 1.02 0.39 0.36 0.45 0.42 0.51 0.48 1.16 1.08 0.19 0.26 0.32 0.58 9,0 0.71 0.77 0.83 0.90 96.0 1.03 1.09 122 0.48 0.21 0.28 0.34 0.41 0.64 0.59 0.55 0.62 69.0 0.76 0.83 0.89 96.0 1.03 1.17 1.24 1.31 1.38 1.19 1.10 0.52 Ξ 0.22 0.30 0.48 0.44 0.74 0.89 96.0 8 1.26 133 14 0.40 0.37 0.72 0.67 0.81 0.24 0.80 0.32 0.56 1.12 1.20 136 1.61 0.88 96.0 1.14 1.04 1.28 7 152 4. 0.09 0.26 0.35 0.53 0.70 0.79 1.75 0.88 96.0 1.05 9 1.49 22 99 0.61 2 7 0.19 0.48 0.77 0.10 0.29 0.39 0.58 0.67 0.87 2 96.0 1.3 4 35 1.16 1.35 1.73 2.14 1.93 1.08 283 0.43 т, О 20.0 0.86 1.82 203 . 0. 1. 0.21 0.32 0.75 96.0 1.07 1.18 8 19. 17 8 200 0.12 0.24 0.48 0.60 0.72 0.84 96.0 2.41 1.08 1.20 4 1.81 1.93 2.05 2.17 1.32 1.56 1.69 0.28 0.14 0.41 0.69 0.83 1.10 1.24 2.34 125 150 175 0.55 96.0 1.38 1.65 2,7 1.93 5.06 2.20 2.48 2.61 2.75 151 0.39 0.32 0.80 96.0 1.12 4 2.89 3.05 0.19 0.16 0.58 0.48 0.77 0.64 1.61 1.93 2.50 2.09 2.89 2.41 3.85 3.21 1.54 1.28 2.70 2.25 3.08 2.57 3.27 2.73 231 96.0 1.16 135 173 1.93 2.12 3.47 3.66 100 3.13 3.61 4.82 2.89 0.24 0.48 0.72 96.0 1.20 ¥ 1.69 1.93 2.17 2.41 2.65 3.37 5.14 3.85 5.46 4.09 5.78 4.33 6.10 4.57 4.49 96.0 1.93 2.89 4.82 9.6 1.28 191 2.25 2.57 3.21 3.53 3.85 4.17 6.42 0.32 75 0.48 4 3.85 7.22 7.70 8.19 9.63 .93 337 433 4.82 6.74 8.67 S 0.50 0.75 1,0 1.25 1.50 1.75 2,00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75 5.00 0.10 0.13 0.17 0.20 0.23 0.27 0.30 0.33 0.37 0.40 0.43 0.47 0.50 0.53 0.57 0.60 0.64 0.67 0.07

* Obtain flow to the area by reading water meter. Calculate canopy area using Ewing's "16 point" measuring system for irregularly shaped areas.

In-Line Drip Tubing Flow Precipitation Rates (Netafim)

	Ш					2	TURF								Š	IRUB	SHRUB & GROUNDCOVER	NOON	000	VER			
GENERAL GUIDELINES	ರ	AYS	OIL	9	MIS	10	SAN	DY S	OIL	COAR	CLAY SOIL LOAM SOIL SANDY SOIL COARSE SOIL CLAY SOIL LOAM SOIL SANDY SOIL COARSE SOIL	=	CLAY	SOIL	2	MAC	SOIL	SA	NDY	SOIL	COA	SE	SOIL
EMITTER FLOW	0	0.26 GPH	H	0	0.4 GPH	x	0.6	0.6 GPH		0.9	0.9 GPH		0.26 GPH	SPH		0.4 GPH	표	0	0.6 GPH	H	0	0.9 GPH	-
EMITTER SPACING		187			12"			.21		150	.2		18			18			12			12	
LATERAL (ROW) SPACING	90	8	22	100	20.	22	12	14"	.91	12.	18" 20" 22" 18" 20" 22" 12" 14" 16" 12" 14" 16" 18" 21" 24" 18" 21" 24" 16" 18" 20" 16" 18" 20"	10	5 21	- 24	20	- 21	24-	16	18	20_	16.	18.	202
BURIAL DEPTH			Bury	(mana	, throa	noute	the	Bury evenly throughout the zone from 4" to 6"	bmo.	-9 ot					Dh-su	rface ne zon	unface or bury evenly throug the zone to a maximum of 6"	y eve maxir	num o	On-surface or bury evenly throughout the zone to a maximum of 6"	nt.		
APPLICATION RATE (INCHES/HOUR)	0.19	0.17	0.15	0.45	0.41	0.37	96'0	0.83	1.72	44	0.19 0.17 0.15 0.45 0.41 0.37 0.96 0.83 0.72 1.44 1.24 1.08 0.19 0.16 0.14 0.29 0.24 0.21 0.72 0.64 0.58 1.08 0.96 0.87	08 0	19 0.1	6 0.1	4 02	9 0.2	1 021	0.72	9.0	0.58	1.08	96.0	0.87
TIMETO APPLY 14" OF WATER (MINUTES) 81 90 99 33 37 41 16 18 21 10 12 14 81 94 108 53 61 70 21 23 26 14 16 17	20	8	83	×	33	41	16	18	23	01	12 1	44	9	100	22	19	2	21	8	98	#	16	17
Following these maximum spacing guidelines, emitter flow selection can be increased if desired by the designer 0.9 GPH flow rate available for areas requiring higher infiltration rates, such as coarse sandy soils.	flow r	mum ate an	spaci	e for	delini	is, em	itter fl	low se	dectio	n can	be inc	rease ach a	d if de	sired is	by the	designed of	ner.						

Note: 0.4, 0.6 and 0.9 GPH are nominal flow rates. Actual flow rates used in the calculations are 0.42, 0.61 and 0.92 GPH.

Measuring irregularly shaped drip zone canopy

When the geometry of an area is complex, the area can be measured by treating it as a circle. The formula for the area of a circle is $Pi(3.14) \times Pi(3.14) \times Pi(3.14$

In the field use a fabricated 2 x 2 plywood sheet with a hole in the center for a screwdriver and place this sheet near the approximate center of the area to be measured. Create 16 permanent radii from the center at 22.5 degree increments on the plywood sheet. Use these as a guide and measure to the perimeter.

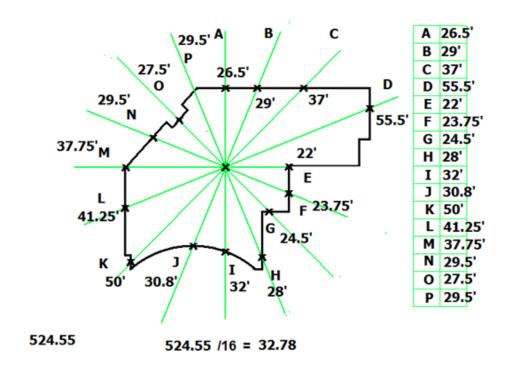


Figure 1- Measuring an irregularly shaped landscape area

For simplicity of calculation inches are converted to a decimal equivalent. A conversion chart for inches to decimal equivalent may be found on the right side of the table on the reverse side of this page.

This shape has a total of 524.55 feet. The average radius is therefore 32.78 (524.5/16). Find the average radius on the reverse table. We have to interpolate to determine that the area is 3,346 sq. ft

Conversion	n Chart -	Average Ra	adius to S	quare Feet	(16 radii	minimum)	
Avergage	Area	Avergage	Area	Avergage	Area	Avergage	Area
Radius	(square	Radius	(square	Radius	(square	Radius	(square
(feet)	feet)	(feet)	feet)	(feet)	feet)	(feet)	feet)
10.00	314	22.00	1,521	43.00	5,809	66.50	13,893
10.25	330	22.50	1,590	43.50	5,945	66.00	13,685
10.50	346	22.75	1,626	44.00	6,082	66.50	13,893
10.75	363	23.00	1,662	44.50	6,221	67.00	14,103
11.00	380	23.25	1,698	45.00	6,362	67.50	14,314
11.25	398	23.50	1,735	45.50	6,504	68.00	14,527
11.50	415	23.75	1,772	46.00	6,648	68.50	14,741
11.75	434	24.00	1,810	46.50	6,793	69.00	14,957
12.00	452	24.25	1,847	47.00	6,940	69.50	15,175
12.25	471	24.50	1,886	47.50	7,088	70.00	15,394
12.50	491	24.75	1,924	48.00	7,238	70.50	15,615
12.75	511	25.00	1,963	48.50	7,390	71.00	15,837
13.00	531	25.50	2,043	49.00	7,543	71.50	16,061
13.25	552	26.00	2,124	49.50	7,698	72.00	16,286
13.50	573	26.50	2,206	50.00	7,854	72.50	16,513
13.75	594	27.00	2,290	50.50	8,012	73.00	16,742
14.00	616	27.50	2,376	51.00	8,171	73.50	16,972
14.25	638	28.00	2,463	51.50	8,332	74.00	17,203
14.50	661	28.50	2,552	52.00	8,495	74.50	17,437
14.75	683	29.00	2,642	52.50	8,659	75.00	17,671
15.00	707	29.50	2,734	53.00	8,825	75.50	17,908
15.25	731	30.00	2,827	53.50	8,992	76.00	18,146
15.50	755	30.50	2,922	54.00	9,161	76.50	18,385
15.75	779	31.00	3,019	54.50	9,331	77.00	18,627
16.00	804	31.50	3,117	55.00	9,503	77.50	18,869
16.25	830	32.00	3,217	55.50	9,677	78.00	19,113
16.50	855	32.50	3,318	56.00	9,852	78.50	19,359
16.75	881	33.00	3,421	56.50	10,029	79.00	19,607
17.00	908	33.50	3,526	57.00	10,207	79.50	19,856
17.25	935	34.00	3,632	57.50	10,387	80.00	20,106
17.50	962	34.50	3,739	58.00	10,568		
18.00	1,018	35.00	3,848	58.50	10,751	Decimal Ed	quival.
18.25	1,046	35.50	3,959	59.00	10,936	inches	decimal
18.50	1,075	36.00	4,072	59.50	11,122		
18.75	1,104	36.50	4,185	60.00	11,310	1	0.08
19.00	1,134	37.00	4,301	60.50	11,499	2	0.17
19.25	1,164	37.50	4,418	61.00	11,690	3	0.25
19.50	1,195	38.00	4,536	61.50	11,882	4	0.33
19.75	1,225	38.50	4,657	62.00	12,076	5	0.42
20.00	1,257	39.00	4,778	62.50	12,272	6	0.50
20.25	1,288	39.50	4,902	63.00	12,469	7	0.58
20.50	1,320	40.00	5,027	63.50	12,668	8	0.67
20.75	1,353	40.50	5,153	64.00	12,868	9	0.75
21.00	1,385	41.00	5,281	64.50	13,070	10	0.83
21.25	1,419	41.50	5,411	65.00	13,273	11	0.92
21.50	1,452	42.00	5,542	65.50	13,478		
21.75	1,486	42.50	5,675	66.00	13,685	c. 2009 Ewing Irr	igation Produ

Once the canopy area of a specific drip irrigation zone has been measured, the flow to the zone must be obtained by operating the zone from the irrigation controller. Proceed to the water meter and observe the flow to the zone as the station is running. Allow a couple of minutes for the tubing to fill and come to full pressure before reading flow at the meter. Proceed to the precipitation rate chart and derive the precipitation rate by matching area in square feet to meter flow in cubic feet per minute (CFM)

Also insure that there is adequate pressure to the last (and or highest) elevation emitter in the zone. Minimum psi for pressure compensating emitters is 10 psi and for drip line 15 psi.

Spray Circuit -	Audit Run Tim	e (4 minu	tes)				
	0-	-		-0			
	[— -		- —	_		Driest 6 catches	5
	1		_				
psi	_						
	Υ			$\overline{\sim}$			
	Ĭ			_			
gpm							
cfm						Total	
Cilii		~				Avg.	
				psi		(total divided b	v 6)
DU _{LQ} dry	6			-	f 24 catch	readings	<u>, , , , , , , , , , , , , , , , , , , </u>
avg					tal divide		
DU _{LQ}		PR	= 3.66 x V _{avg}				
			t _r x 16.5		PR		
Rotating Strea	m Circuit Aug	dit Dun Ti	ma /10 minu	+00\			
Notating Strea	- Aut		ile (10 illillu				
	- Y—	_ ~		\preceq		Driest 6 estable	
psi						Driest 6 catches	>
	- <u> </u>			$\overline{\wedge}$			
	- Y	O					
gpm	- <u> </u>						
cfm	<u> </u>			_		Total	
						Avg.	
DU _{LQ} dry				psi		(total divided b	y 6)
avg c	f 24					readings	
DU _{LQ}					tal divide	d by 24)	
		PR	= 3.66 x V _{avg}				
			t _r x 16.5		PR	17	,

	ng Irregularly shaped Are			
⁄leasur	ement			
	Α			
	В			
	С			
	D			
	E			STATE OF THE STATE
	F			
	G		\$	
	Н			
	I			
	J			
	К			The state of the s
	L		02:25.3	
	M			1
	N			
	О			
	Р			
	P	EMITTER FLOW (TIME TO FI	LL 2" CAP)
	TOTAL	EMITTER FLOW (TIME TO FI	LL 2" CAP)
		EMITTER FLOW (TIME TO FI	LL 2" CAP) FILL TIME
	TOTAL			
	TOTAL AVG/16			
	TOTAL AVG/16	EMITTER TYPE	GPH	FILL TIME
	TOTAL AVG/16 SQ. FT	EMITTER TYPE POINT SOURCE	GPH 2.00	FILL TIME 56 SECONDS
	TOTAL AVG/16 SQ. FT METER	POINT SOURCE POINT SOURCE	GPH 2.00 1.00	FILL TIME 56 SECONDS 1 MIN 52 SECONDS
	TOTAL AVG/16 SQ. FT METER FLOW	POINT SOURCE POINT SOURCE LINE SOURCE	GPH 2.00 1.00 0.92	FILL TIME 56 SECONDS 1 MIN 52 SECONDS 2 MIN 2 SECONDS
	TOTAL AVG/16 SQ. FT METER FLOW	POINT SOURCE POINT SOURCE LINE SOURCE LINE SOURCE	2.00 1.00 0.92 0.61	FILL TIME 56 SECONDS 1 MIN 52 SECONDS 2 MIN 2 SECONDS 3 MIN 4 SECONDS
	TOTAL AVG/16 SQ. FT METER FLOW CFM	POINT SOURCE POINT SOURCE LINE SOURCE LINE SOURCE POINT SOURCE	2.00 1.00 0.92 0.61 0.50	FILL TIME 56 SECONDS 1 MIN 52 SECONDS 2 MIN 2 SECONDS 3 MIN 4 SECONDS 3 MIN 45 SECONDS
	TOTAL AVG/16 SQ. FT METER FLOW CFM	POINT SOURCE POINT SOURCE LINE SOURCE LINE SOURCE POINT SOURCE	2.00 1.00 0.92 0.61 0.50	FILL TIME 56 SECONDS 1 MIN 52 SECONDS 2 MIN 2 SECONDS 3 MIN 4 SECONDS 3 MIN 45 SECONDS
	TOTAL AVG/16 SQ. FT METER FLOW CFM	POINT SOURCE POINT SOURCE LINE SOURCE LINE SOURCE POINT SOURCE	2.00 1.00 0.92 0.61 0.50	FILL TIME 56 SECONDS 1 MIN 52 SECONDS 2 MIN 2 SECONDS 3 MIN 4 SECONDS 3 MIN 45 SECONDS

The water meter is an important management tool during the drought. As a landscape professional you can provide a very important service for your customers by monitoring their water use. If you are performing landscape maintenance at a site, then you are visiting it on a weekly basis and it will take just a few minutes to provide this service. Your primary objective in this regard is to look for leaks. Open the valve meter box when you arrive for maintenance and watch the meter for a few moments. There is a low flow indicator on the meter. If the meter is not dedicated to the landscape there may be a flow of potable to the residence or building. Try to check for leaks when no one is present in the building. If the irrigation system is off and no one is home the low flow indicator should not be moving. Observe it for a few seconds to see if it is turning. It may not be turning, but there still may be a leak. Note the position of the needle and the reading on the total flow which looks like a car's odometer. Check this before you leave the site to see if there has been any flow during your maintenance period. Calculate the flow of the leak per hour and multiply by 8,760 (hours per year to determine the amount of water loss per year.

At each maintenance visit check the low flow indicator and the position of the needle and total flow to determine if there is a slow leak. Take a digital image with your phone camera to document any leaks as well as the meter number. This is a great low cost service that you can provide to your customers during the drought!

The water meter is usually located between the curb and the backflow prevention device. Most commercial sites have dedicated landscape meters but this is not always the case. Meters record water volume in gallons or cubic feet, but most water agencies provide meters that record in cubic feet. A cubic foot of water is 7.48 gallons and is a 12"x12"x12" cube. Customers are billed in what is known as ccf's or hundred cubic foot units of 748 gallons.

Each full revolution of the dial on commercial meters (1 ½" and larger) represents a flow of ten cubic feet or 74.8 gallons

Each full revolution of the dial on a residential meter (5/8", 3,4" and 1") represents a flow of one cubic foot or 7.48 gallons

The water meter limits the amount of water that can be delivered to the site. Most irrigation systems were designed with the expectation that they would apply water anywhere from three to seven days per week. Take the system that in non-drought years was able to water six days per week and nine hours per day in the month of July. This is a total watering time of 3,240 minutes (6 x 9 x 60). Let's assume this is a 2" meter providing 50 gallons per minute. Under these conditions the meter could provide up to 162,000 gallons per week. (This 50 gpm flow is an average as some stations such as drip have far less flow and others such as large turf rotors have more)

Now, transition to a drought where watering is allowed two days per week for a maximum of thirty hours per week. The amount of water that could be delivered to the site would be 90,000 gallons (1,800 minutes \times 50 = 90,000. Given this shortfall it is likely the site manager will have to set priorities on landscape watering and it is possible that some areas of the landscape may not survive. Invest the landscape water in large trees and shrubs which have the greatest value in the landscape!

Managing Landscape Water in the Drought of 2015 – Meeting your conservation goal

The State Water Resources Control Board has directed Water Suppliers throughout California to reduce their water use dramatically in 2015. Each district has been charged with a goal for reducing water use and it varies by district from 4 to 36%. The secret to achieving these reduction goals is to establish realistic expectations about what can be achieved in the landscape. In many cases significant areas of the landscape may have to be sacrificed to save higher value plant material such as trees.

Understand that the reductions in water use must take place immediately! Furthermore, the amount of landscape that can be irrigated in early spring will be far less than in the warmest month which is July. The ET_L or plant water requirement for cool season turf is only 4.06" per month in May in Stockton. In July, the ET_L is 4.78". Don't water any more square footage of landscape in May than you can keep alive in July. It is simply a waste of water!

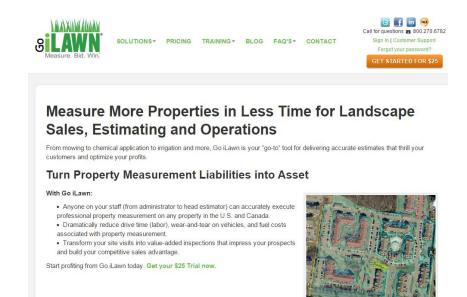
In order to set meaningful goals you'll need the site water bills for 2013 and the square footage of the landscape. Let's work an example to help illustrate the process. Review the water bill for July 2013 and determine the CCF's or billing units of water used at the site. (A billing unit is 100 cubic feet or 748 gallons). Let's assume in this example the site water use is 40 units of water in July for this residential estate. You have been directed to reduce water use by 36%! Determine the water use goal for July 2015 and then we will determine how many square feet can be irrigated. We'll determine the new water use goals by factoring 64% against 40 units which is 25.6 units.(40 x 0.64 = 25.6) Twenty five point six (25.6) units of water is 19, 148 gallons. (25.6 x 748 = 19,148). Our 2013 use was 40 units or 29,920 gallons (40 x 748 = 29,920). The amount of water that must be saved is the difference between 2013 use 29,948 and 2015 goal of 19,148. The amount of water that must be eliminated from July 2015 consumption is 10,771 gallons.

All we have to understand now is how many gallons are required to keep one foot of either turf or ornamentals alive at marginal quality in July. We use the average ET_0 for the month of July from CIMIS station #70, Manteca. We reduce the requirement for the plant material to account for the landscape coefficient and then increase according to an average DU_{LQ} (uniformity of coverage) for the sprinklers. We then convert inches to gallons per square foot.

				56% DU _{LQ}	72% DU_{LQ}	90% DU _{LQ}
Turf (cool season	7.96	0.6	4.776	6.50 (4.536 x 1.36)	5.73 (4.746" x 1.20)	
Ornamentals	7.96	0.4	3.184	(4.550 X 1.50)	(4.740 X 1.20)	3.38 (3.024" x 1.0
Gall	•	square fo ches x 0.6	ot per month 234)			
DU _{LQ} Sprays at 56%		4.05	for cs turf			
Rotating Stream a	t 72%	3.57	for cs turf			
Drip at 90%		2.10	for ornamentals			

21

Managing Landscape Water in the Drought of 2015 – Meeting your conservation goal!


Let's assume that the entire site is sprays with the typical uniformity shown. The water requirement is 4.05 gallons per square foot and the amount to be saved is 10, 771 gallons. Simply divide the 10,771 by 4.05 which is 2,659 square feet of turf you'll have to eliminate from irrigation in 2015 starting now!

Another way to look at it is that you have an allocation of 19,148 gallons. How many square feet could be maintained with this water in July? The answer is 19,148 divided by 4.05 gal / sq. ft. which is **4,727 square feet.**

Now let's assume you upgrade to MP Rotators and improve the uniformity from 56% with sprays to 72%. You'll be able to keep more area alive. The 19,148 gallons would irrigate more area due to the higher uniformity for an area of 5,363 square feet! (19,148 / 3.30 = 5,363 sq ft). Same amount of water, but a more efficient use of water due to the higher uniformity of this sprinkler type.

One thing to keep in mind is that you should not turn off lawn in a wholesale fashion as there are often trees in these lawns, that when deprived of lawn water will die. In these cases turn off all the nozzles except those under the canopy of the trees

Ultimately the accuracy of this technique relies on careful site measurement. Utilize web sites such as google maps or Go I Lawn to remotely measure or utilize Ewing's 16 point measurement method for irregular shapes.

22